Stammfunktion < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe eine (kurze) Frage zu einer Integrationstechnik, welche ich an einem Beispiel darstellen möchte.
[mm]\integral_{}^{} \frac{x}{1 + x^2} dx = \frac{1}{2} ln(1 + x^2) + c[/mm]
Woher kommt das [mm]\frac{1}{2}[/mm] vor dem Logarithmus? Gilt nicht [mm]\integral_{}^{} \frac{f'(x)}{f(x)} dx = ln|f(x)| + c[/mm] ? Stammt das von dem [mm]x^2[/mm] und kann mir das jemand kurz erklären? (Nebenbei: Wieso ist [mm]x[/mm] eine Ableitung von [mm]x^2[/mm] ?)
Vielen Grüße
Philipp
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Du gibst dir die Antwort schon selbst! Die Ableitung von x² ist 2x. Da in dem Integranden offenbar keine 2 steht, muß in der Stammfunktion ein Faktor 1/2 stehen, der die 2 beim Ableiten frißt.
Also: Wenn in der Ableitung Faktoren auftauchen, die dort nicht im INtegranden stehen, muß die Stammfunktion den Kehrwert dieser Faktoren beinhalten.
|
|
|
|
|
Danke erst einmal für Deine Antwort.
Aber wieso ist dann [mm]\integral_{}{} \frac{sin x}{2 + cos x} dx = - ln | 2 + cos x | + c[/mm] ? [mm]sin x[/mm] ist doch die Stammfunktion von [mm]cos x[/mm], wieso ist da noch ein Minus vor dem Logarithmus? Oder habe ich etwas übersehen?
Edit: Ups, da habe ich wohl was durcheinander gebracht. [mm]sin x[/mm] ist Ableitung von [mm]-cosx[/mm], deshalb wohl auch das Minus vor dem [mm]ln[/mm].
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:48 So 23.07.2006 | Autor: | Loddar |
Hallo DrRobotnik!
Auch hier gibst Du Dir in Deinem Edit die Antwort selbst. Da die Ableitung von [mm] $2+\cos(x)$ [/mm] den Term [mm] $\red{-} [/mm] \ [mm] \sin(x)$ [/mm] ergibt, musst Du zunächst den Bruch mit $(-1)_$ erweitern ...
Gruß
Loddar
|
|
|
|