matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungStammfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:58 Mo 30.01.2012
Autor: sabatiel

Aufgabe
Gib eine Stammfunktion zu f mit [mm] f(x)=x*(x^2+3)^6 [/mm] an.
Hinweis: Ermittle zunächst eine Stammfunktion zu g mit [mm] g(x)=2x*7(x^2+3)^6. [/mm]

Hi,
wir haben diese Aufgabe heute von unserer Lehrerin aufbekommen und ich bin mir bezüglich des Ergebnisses nicht sicher.
Mein Ergebnis für g(x) ist [mm] (x^2+3)^7 [/mm] und für f(x) [mm] 7x^-2(x^2+3)^7. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Mo 30.01.2012
Autor: fred97


> Gib eine Stammfunktion zu f mit [mm]f(x)=x*(x^2+3)^6[/mm] an.
>  Hinweis: Ermittle zunächst eine Stammfunktion zu g mit
> [mm]g(x)=2x*7(x^2+3)^6.[/mm]
>  Hi,
>  wir haben diese Aufgabe heute von unserer Lehrerin
> aufbekommen und ich bin mir bezüglich des Ergebnisses
> nicht sicher.
>  Mein Ergebnis für g(x) ist [mm](x^2+3)^7[/mm]

Das stimmt.

> und für f(x)
> [mm]7x^-2(x^2+3)^7.[/mm]

Was steht da ? [mm]7x^{-2}(x^2+3)^7 ~ ?[/mm]

Wenn ja, so ist das keine Stammfunktion von f   !!

Bedenke: [mm] $f(x)=\bruch{1}{14}g(x)$ [/mm]

FRED


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Bezug
                
Bezug
Stammfunktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:36 Mo 30.01.2012
Autor: sabatiel

Hi,
Danke für den Tipp

> Bedenke: [mm]f(x)=\bruch{1}{14}g(x)[/mm]
> FRED

Mein Ergebnis lautet nun [mm] \bruch{1}{14x}*(x^2+3)^7+c [/mm]



Bezug
                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Mo 30.01.2012
Autor: Steffi21

Hallo, nicht ganz in den Nenner des Bruches gehört kein x, du kannst für dich mal die Probe machen, bilde die Ableitung von [mm] \bruch{1}{14}(x^{2}+3)^{7}+C [/mm] nach Kettenregel Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]