matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Stand.abw und Korrelationskoef
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Stand.abw und Korrelationskoef
Stand.abw und Korrelationskoef < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stand.abw und Korrelationskoef: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Fr 08.02.2013
Autor: meg

Aufgabe
Es seien  [mm] X_{1}, X_{2} [/mm] Zufallsvariablen mit Korrelationskoeffizient $ [mm] \rho_{X,Y} [/mm] $. Zu zeigen  [mm] \sigma_{X+Y} \le \sigma_{X}+\sigma_{Y}. [/mm]


hallo,

könnte mir vielleicht jemand sagen, ob ich das richtig gemacht habe??

Mit [mm] $\rho (X_{1},X_{2}) [/mm] = [mm] \frac{Cov(X_{1},X_{2})}{\sigma_{X_{1}} \sigma_{X_{2}}} [/mm] $ gilt
$ [mm] \sigma_{X_{1}+X_{2}} [/mm] = [mm] \sqrt{\sigma_{X_{1}}^2+\sigma_{X_{2}}^2 +2 \cdot Cov(X_{1},X_{2})} [/mm] = [mm] \sqrt{\sigma_{X_{1}}^2+\sigma_{X_{2}}^2 +2 \cdot \sigma_{X_{1}} \sigma_{X_{2}} \rho (X_{1}, X_{2})} $ [/mm]
Nach Cauchy-Schwarzscher Ungleichung [mm] \[ |Cov(X_{1},X_{2})| \le \sigma_{X_{1}} \sigma_{X_{2}} \] [/mm] gilt dann weiter:

$ [mm] \sigma_{X_{1}+X_{2}} [/mm] = [mm] \sqrt{\sigma_{X_{1}}^2+\sigma_{X_{2}}^2 +2 \sigma_{X_{1}} \sigma_{X_{2}} \rho (X_{1}, X_{2})} \le \sqrt{\sigma_{X_{1}}^2+\sigma_{X_{2}}^2 +2 \sigma_{X_{1}} \sigma_{X_{2}}} [/mm] = [mm] \sqrt{(\sigma_{X_{1}}+\sigma_{X_{2}})^2} [/mm] = [mm] \sigma_{X_{1}}+ \sigma_{X_{2}} [/mm] $

        
Bezug
Stand.abw und Korrelationskoef: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Fr 08.02.2013
Autor: luis52

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Moin meg,

ich finde das folgende Argument einleuchtender:

Setze $f(\rho)= \sqrt{\sigma_{X_{1}}^2+\sigma_{X_{2}}^2+2 \sigma_{X_{1}} \sigma_{X_{2}} \rho $, $-1\le\rho\le +1$. $f$ ist offensichtilch streng monoton steigend und hat somit ein Randmaximum  fuer $\rho=1$, so dass

$f(\rho)< f(1)=\sqrt{(\sigma_{X_{1}}+\sigma_{X_{2}})^2}=\sigma_{X_{1}}+\sigma_{X_{2}$

vg Luis



Bezug
                
Bezug
Stand.abw und Korrelationskoef: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Sa 09.02.2013
Autor: meg

Hallo Luis, vielen Dank für den hilfreichen Hinweis..

VG
meg

Bezug
                
Bezug
Stand.abw und Korrelationskoef: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 So 10.02.2013
Autor: meg

Ich stelle mir jetzt die Frage, ob ich mit dem obigen Beweis Folgendes (bzgl. der Quantilfunktion der Normalverteilung) begründen kann?

Ich nehme noch zusätzlich an, dass $ [mm] \alpha \ge [/mm] 0,5$ ist, damit die Werte von  [mm] \Phi^{-1}( \alpha) [/mm] positiv ausfallen.

[mm] $\mu_{X_{1}}+\mu_{X_{2}} [/mm] + [mm] \Phi^{-1}( \alpha) f(\rho) \le \mu_{X_{1}}+\mu_{X_{2}} [/mm] + [mm] \Phi^{-1} [/mm] f(1) $

Ich würde sagen ja... und ihr?

Grüße
meg






Bezug
                        
Bezug
Stand.abw und Korrelationskoef: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Mo 11.02.2013
Autor: luis52


> [mm]\mu_{X_{1}}+\mu_{X_{2}} + \Phi^{-1}( \alpha) f(\rho) \le \mu_{X_{1}}+\mu_{X_{2}} + \Phi^{-1} f(1)[/mm]
>  
> Ich würde sagen ja... und ihr?


Auch ja. Aber wozu ist das gut?

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]