matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenBauingenieurwesenStatik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Bauingenieurwesen" - Statik
Statik < Bauingenieurwesen < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Statik: verbundlose Querschnitte
Status: (Frage) beantwortet Status 
Datum: 23:31 So 16.05.2010
Autor: hannelore

Aufgabe
A.3) geg.: System a) 2 verbundlose aufeinander liegende Querschnitte (1) und (2)
(E=konstant, 1-Feldträger)

a) ges.: % Lastabtrag der beiden Querschnitte; Randspannung von Querschnitt (2);

System b): h* eines Vollquerschnitts mit dem Kriterium , dass bei beiden Systemen ( a und b ) dieselbe Durchbiegung vorliegt.

Hallo Zusammen,

Ich komme mit obiger Aufgabe nicht weiter.

Skizze:

[Dateianhang nicht öffentlich]

Ich habe es mir so gedacht bzw. probiert.

Gleichung für die Durchbiegung eines Trägers auf 2 :

w = ( 5 * q * L² ) / ( 384 * E * I )

angenommen ich setze für q = 0,001 MN/m; L = 10 m und dann für I gesamt = I1 + I2 = 0,00072916 [mm] m^4. [/mm] Da E konstant ist habe ich den E-Modul einfach von Holz mit 11000 MN/m² angenommen.
Ergibt eine Durchbiegung von 0,016 m.

Nun habe ich die Durchbiegung des Trägers mit einem der beiden Querschnitt nochmal berechnet und erhalte dann mit I2 = 0,021 m. Das wollte ich nun irgendwie ins Verhältnis setzen.

Zur Lösung von b.) Würde ich in die Gleichung der Durchbiegung w ein I= ( [mm] b*h^3) [/mm] / 12 einsetzen und dann nach h umstellen.

Ich weiß nicht ob mein Ansatz kompletter Unsinn ist. Wenn mir jemand bei der Lösung helfen könnte, wäre das sehr nett!

MfG Hannelore


Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
        
Bezug
Statik: nach Steifigkeiten
Status: (Antwort) fertig Status 
Datum: 23:40 So 16.05.2010
Autor: Loddar

Hallo Hannelore!


Da die beiden Querschnitte nicht schubsteif miteinander verbunden sind, teilen sich die Traganteile gemäß den einzelnen Biegesteifigkeiten auf.
Da das E-Modul konstant ist, teilt es sich nach den Einzelträgheitsmomenten auf:
[mm] $$I_1 [/mm] \ = \ [mm] \bruch{h_1^3*b}{12}$$ [/mm]
[mm] $$I_2 [/mm] \ = \ [mm] \bruch{h_2^3*b}{12}$$ [/mm]
[mm] $$I_{\text{ges.}} [/mm] \ = \ [mm] I_1+I_2$$ [/mm]

Für dieses Gesamträgheitsmoment musst Du dann die Höhe [mm] $h^{\star}$ [/mm] berechnen:
[mm] $$I^{\star} [/mm] \ = \ [mm] \bruch{\left(h^{\star}\right)^3*b}{12} [/mm] \ = \ [mm] I_{\text{ges.}}$$ [/mm]
Mit etwas Vereinfachen ergibt sich dann:
[mm] $$h^{\star} [/mm] \ = \ [mm] \wurzel[3]{h_1^3+h_2^3}$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]