matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStatistische Schätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Statistische Schätzung
Statistische Schätzung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Statistische Schätzung: Aufgabe - Idee gesucht
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:03 So 18.01.2015
Autor: KGB-Spion

Aufgabe
Die Prävalenz von Parkinson beträgt in Deutschland 0,4%.

a) Wie groß muss eine zufällige Stichprobe in Deutschland mindestens sein, damit sich darin mit höchstens 5%iger Wahrscheinlichkeit kein Parkinson-Patient befindet?

b) Bestimmen Sie nährungsweise die Wahrscheinlichkeit dafür, dass maximal 50 von 10000 Deutschen an Parkinson erkrankt sind.

Liebe Forumuser,

ich schreibe vom Account meines Freundes und komme mit dieser Aufgabe nicht klar.

Wie wäre der Ansatz bei Teilaufgabe a) ? Ist das eine Binomialverteilung?

zu b) fehlt mir jede Idee.

Ich bitte euch darum, mir bei dieser Aufgabe zu helfen da ich dazu keinen Lösungsansatz erdenken kann.


        
Bezug
Statistische Schätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 So 18.01.2015
Autor: KGB-Spion

Ich verstehe ja, dass die 0,4% auf die Einzelwahrscheinlichkeit von p=0,4/100 deuten sollen.

Aber wie genau kommt man auf die maximale Größe bei Teilaufgabe a) ?

Bezug
                
Bezug
Statistische Schätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 So 18.01.2015
Autor: luis52

Moin, berechne doch mal die Wsk dafuer, dass sich unter $n$ zufaellig ausgewaehlten Personen kein Parkinson-Patient befindet ...


Bezug
                        
Bezug
Statistische Schätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 So 18.01.2015
Autor: KGB-Spion

Das wäre doch:

0,4/100 * n ?

Bezug
                                
Bezug
Statistische Schätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 So 18.01.2015
Autor: luis52


> Das wäre doch:
>
> 0,4/100 * n ?

Wie das? Fur $n=1$ ist die Wsk $0.996$, fuer $n=2$ ist sie [mm] $0.996^2$, [/mm]  usw.


Bezug
                                        
Bezug
Statistische Schätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 So 18.01.2015
Autor: KGB-Spion

Sorry: Ich meinte natürlich 1- (0,4/100 * n)

--> Ist es also gewollt dass ich bei Teilaufgabe a) den folgenden Ansatz mache:

1) Die wahrscheinlichkeit dass ein ausgewählter Pazient gesund ist, liegt bei:

[mm] p_{gesund} [/mm] = 1- [mm] \bruch{0,4}{100} [/mm]

2) Die gesuchte Wahrscheinlichkeit soll ja 5% sein --> [mm] p_{Ergebnis} [/mm] = [mm] \bruch{0,5}{100} [/mm]

3) [mm] p_{Ergebnis} [/mm] = [mm] \bruch{0,5}{100} [/mm] = n* (1- [mm] \bruch{0,4}{100}) [/mm]

und 4) den Term aus 3) nach n auflöse?

Bezug
                                                
Bezug
Statistische Schätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 So 18.01.2015
Autor: luis52


> 2) Die gesuchte Wahrscheinlichkeit soll ja 5% sein -->
> [mm]p_{Ergebnis}[/mm] = [mm]\bruch{0,5}{100}[/mm]
>  
> 3) [mm]p_{Ergebnis}[/mm] = [mm]\bruch{0,5}{100}[/mm] = n* (1-
> [mm]\bruch{0,4}{100})[/mm]

Es muss heissen:

$0,05= (1- [mm] \bruch{0,4}{100})^n$ [/mm]

>  
> und 4) den Term aus 3) nach n auflöse?

Ja.




Bezug
                                                        
Bezug
Statistische Schätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Mo 19.01.2015
Autor: KGB-Spion

Okay vielen lieben Dank! Die a) habe ich verstanden aber wie fange ich bei der b) an?

Kannst Du mir bitte einen Tipp geben?

Bezug
                                                                
Bezug
Statistische Schätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Di 20.01.2015
Autor: luis52


> wie fange ich bei der b) an?
>  
> Kannst Du mir bitte einen Tipp geben?  

Approximation der Binomial- durch die Poisson-Verteilung.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]