matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenSteckbriefaufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: gebrochen-rationale Funktionen
Status: (Frage) beantwortet Status 
Datum: 17:06 Mo 20.12.2010
Autor: Mene

Aufgabe
Eine gebrochen-rationale Funktion hat die Pole x= +- 2 mit VZW sowie den Nullstellen N1und 2 (+-1/0). Außderdem besitzt sie eine waagrechte Asymptote und dem Hochpunkt H(0/1). Gib einen möglichen Funktionsterm an und skizziere das Schaubild.

Kann mir hier vielleicht jemand weiterhelfen?? Ich kenne mich da irgendwie gar nciht aus, und weiß überhaupt nicht wie ich vorgehen soll. Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Steckbriefaufgabe: erste Hinweise
Status: (Antwort) fertig Status 
Datum: 17:17 Mo 20.12.2010
Autor: Loddar

Hallo Mene,

[willkommenmr] !!


Dass eine waagerechte Asymptote existiert, deutet darauf hin, dass Zählergrad und Nennergrad gleich groß sind.


Durch die gegebenen Polstellen kennen wir die Nullstellen des Nenners (= Definitionslücken).

Die Nullstellen geben gleichzeitig die Nullstellen des Zählers an.

Damit ergibt sich schon einmal folgender Ansatz der Funktionsvorschrift:

$f(x) \ = \ [mm] A*\bruch{(x+1)*(x-1)}{(x+2)*(x-2)} [/mm] \ = \ [mm] A*\bruch{x^2-1}{x^2-4}$ [/mm]

Versuche nun, die Eigenschaften des gegebenen Hochpunktes (einschließlich Funktionswert) zu verwerten.


Gruß
Loddar


Bezug
                
Bezug
Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mo 20.12.2010
Autor: Mene

Wow.
Das hilft mir schon mal ein großes Stück weiter.

Es ist doch so, wenn ich die zweite Ableitung =0 setze, bekomme ich den Extrempunkt raus. Hilft mir das hier weiter?
Und was genau sagt mir das A?


Bezug
                        
Bezug
Steckbriefaufgabe: einsetzen
Status: (Antwort) fertig Status 
Datum: 17:33 Mo 20.12.2010
Autor: Loddar

Hallo Mene!


Für Extremwerte muss die erste Ableitung gleich Null sein.

Und das [mm]A_[/mm] ist noch eine Unbekannte, welche Du noch bestimmen musst.

Zum Beispiel mittels [mm]f(0) \ = \ ... \ = \ 1[/mm] .


Gruß
Loddar


Bezug
                                
Bezug
Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Mo 20.12.2010
Autor: Mene

Ahhh, wow.
Jetzt verstehe ich das! Ich weiß ja, dass der HOchpunkt auf der Kurve liegt, deshlab kann ich den ja einfach einsetzen.. =) Super!
Weil dann kommt für A=4 raus... =)
KÖnntest du mir vielleicht eine ähnliche aufgabe zum Üben geben??
Wäre sehr nett!

Bezug
                                        
Bezug
Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:37 Di 21.12.2010
Autor: angela.h.b.


> KÖnntest du mir vielleicht eine ähnliche aufgabe zum
> Üben geben??
> Wäre sehr nett!

Hallo,

mit etwas Suchen findest Du im Forum eine Fülle von Stekbriefaufgaben.

Schau z.B. ins Unterforum Steckbriefaufgaben.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]