matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungSteckbriefaufgabe mit Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Steckbriefaufgabe mit Integral
Steckbriefaufgabe mit Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe mit Integral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:20 So 03.12.2006
Autor: kermit

Aufgabe
Eine ganzrationale Funktion f zweiten Grades schneidet die X-Achse an den Stellen -4 und 3. Die Fläche, die der Grapf f mit der X-Achse einschließt, wird von der Y-Achse so geteilt, dass der linke Teil eine um 12 * 1/6 größere Maßzahl hat als der rechte Teil. Bestimme den Funktionsterm.

Alsooo

Die Gleichung für eine Funktion 2ten Grades: ax²+bx+c=y

I P(-4|0) : 16a²-4b+c=0
II P(3|0) : 9a²-3b+c=0

und die dritte weiß ich nicht, wie ich die aufstellen soll, bitte helfen :)

Ich hatte die Idee, für die dritte Bedingung folgendes aufzustellen: [mm] \integral_{-4}^{3}{f(x) dx}= [/mm] 12*(1/6)x+x

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Steckbriefaufgabe mit Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 So 03.12.2006
Autor: hase-hh

moin kermit,

da du die beiden nullstellen der gesuchten funktion hast, hast du auch die
intervallgrenzen für deine integralrechnung; nämlich der linke teil (jenseits der y-achse) [-4;0]  und der rechte teil (diesseits der y-achse) [0;3]

du bildest also einfach die stammfunktion

[mm] ax^2 [/mm] +bx +c    -> [mm] \bruch{1}{3}ax^3 [/mm] + [mm] \bruch{1}{2}bx^2 [/mm] +cx


und dann soll ja gelten:

F(0) - F(-4) = F(3) - F(0) +2               (2 = 12* [mm] \\bruch{1}{6} [/mm] )

daraus sollte jetzt eine dritte gleichung folgen...

gruß
wolfgang









Bezug
                
Bezug
Steckbriefaufgabe mit Integral: danke :)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 So 03.12.2006
Autor: kermit

gut, dann löse ich die Gleichung nach x auf, bekomme dann die Werte für das Integral setze das in die Ausgangsfunktion ein und kann dann die Matrix ausrechnen.

wenn das richtig ist vielen dank für die gute Antwort am späten Abend :)

hoffe das klappt morgen :)

Bezug
                
Bezug
Steckbriefaufgabe mit Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:10 So 03.12.2006
Autor: kermit

So ich komm mit meiner Rechnung nicht weiter, ich habe jetzt die beiden Integrale gleichgesetzt, aber ich verstehe dein +2 hinter der rechten Fläche nicht :( also der Faktor um den die eine Fläche größer sein soll.

Bezug
                        
Bezug
Steckbriefaufgabe mit Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 03.12.2006
Autor: M.Rex

Hallo

Die Fläche soll um [mm] 12*\bruch{1}{6} [/mm] grösser sein, asl die andere.

Und [mm] 12*\bruch{1}{6}=\bruch{12}{6}=2 [/mm]

Marius

Bezug
                                
Bezug
Steckbriefaufgabe mit Integral: danke, danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:52 So 03.12.2006
Autor: kermit

Ok vielen Dank euch beiden, hat jetzt wunderbar geklappt und es kommt auch 100% das richtige raus, habs sogar verstanden :]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]