matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteSteigung mittels Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Steigung mittels Grenzwert
Steigung mittels Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steigung mittels Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Sa 05.01.2008
Autor: Delia00

Aufgabe
Gegeben sie die Funktion [mm] f(x)=5x^{2}+3x [/mm]

a) Berechne die Steigung mittels Grenzwert

b) Wie groß ist die Steigung im Punkt [mm] x_{0}=2? [/mm]

Hallo,

ich muss doch bei der Aufgabe folgende Gleichung verwenden:

[mm] f'(x_{0})=\limes_{x\rightarrow x_{0}}\bruch{f(x)-f(x_{0}}{x-x_{0}} [/mm]

Ich versteh aber nicht, wie ich da bei a vorgehen muss.

Könnte mir bitte jemand weiterhelfen.

Delia

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Steigung mittels Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Sa 05.01.2008
Autor: Zwerglein

Hi, Delia,

> Gegeben sie die Funktion [mm]f(x)=5x^{2}+3x[/mm]
>  
> a) Berechne die Steigung mittels Grenzwert
>  
> b) Wie groß ist die Steigung im Punkt [mm]x_{0}=2?[/mm]
>  Hallo,
>  
> ich muss doch bei der Aufgabe folgende Gleichung
> verwenden:
>  
> [mm]f'(x_{0})=\limes_{x\rightarrow x_{0}}\bruch{f(x)-f(x_{0}}{x-x_{0}}[/mm]
>  
> Ich versteh aber nicht, wie ich da bei a vorgehen muss.

Die Regel lautet: "Einsetzen und dann durch (x - [mm] x_{0}) [/mm] kürzen!"

Also: [mm]f'(x_{0})=\limes_{x\rightarrow x_{0}}\bruch{(5x^{2}+3x) - (5x_{0}^{2}+3x_{0})}{x-x_{0}}[/mm]

Und nun umformen, bis Du im Zähler (x - [mm] x_{0}) [/mm] ausklammern und kürzen kannst.
Wenn Du das geschafft hast, kannst Du x [mm] \to x_{0} [/mm] gehen lassen (was im Prinzip ja nichts anderes heißt als: Ersetze auch die verbleibenden x durch [mm] x_{0} [/mm] !)

mfG!
Zwerglein  

Bezug
                
Bezug
Steigung mittels Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Sa 05.01.2008
Autor: Delia00

Hallo,

also ich setze dann ein:

[mm] f'(x_{0})=\limes_{x\rightarrow x_{0}}\bruch{(5x^{2}+3x) - (5x_{0}^{2}+3x_{0})}{x-x_{0}} [/mm]

Löse die Klammern auf:


[mm] f'(x_{0})=\limes_{x\rightarrow x_{0}}\bruch{5x^{2}+3x - 5x_{0}^{2}-3x_{0}}{x-x_{0}} [/mm]

und jetzt muss ich ausklammern, aber da steh ich irgendwie auf dem Schlauch:

[mm] \bruch{(x-x_{0})*(5x+3+5x_{0}+3)}{x-x_{0}} [/mm]

Irgendwie ist das glaub ich falch.

Könnte mir da jemand weiterhelfen??

Bezug
                        
Bezug
Steigung mittels Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Sa 05.01.2008
Autor: steppenhahn

Du musst die ursprünglich gleichen Formelteile einfach ausklammern:

[mm] f'(x_{0})=\limes_{x\rightarrow x_{0}}\bruch{5x^{2}+3x - 5x_{0}^{2}-3x_{0}}{x-x_{0}} [/mm]

Ein wenig Umordnen:
= [mm] \limes_{x\rightarrow x_{0}}\bruch{5x^{2}- 5x_{0}^{2} + 3x -3x_{0}}{x-x_{0}} [/mm]

= [mm] \limes_{x\rightarrow x_{0}}\bruch{5*(x^{2}- x_{0}^{2}) + 3*(x - x_{0})}{x-x_{0}} [/mm]

Die dritte binomische Formel erkennen:
= [mm] \limes_{x\rightarrow x_{0}}\bruch{5*(x - x_{0})*(x + x_{0}) + 3*(x - x_{0})}{x-x_{0}} [/mm]

Nun (x - [mm] x_{0}) [/mm] oben vollständig ausklammern:
= [mm] \limes_{x\rightarrow x_{0}}\bruch{(x - x_{0})*(5*(x + x_{0}) + 3)}{x-x_{0}} [/mm]

Kürzen:
= [mm] \limes_{x\rightarrow x_{0}}(5*(x [/mm] + [mm] x_{0}) [/mm] + 3)

= [mm] 10x_{0} [/mm] + 3

Bezug
        
Bezug
Steigung mittels Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 So 06.01.2008
Autor: Delia00

Hallo,

muss ich eigentlich nun beim Aufgabenteil b [mm] x_{0}=2 [/mm] nun in die erste Ableitung einsetzen um damit die Steigung zu bestimmen??


Gruß, Delia

Bezug
                
Bezug
Steigung mittels Grenzwert: richtig
Status: (Antwort) fertig Status 
Datum: 16:06 So 06.01.2008
Autor: Loddar

Hallo Delia!


> muss ich eigentlich nun beim Aufgabenteil b [mm]x_{0}=2[/mm] nun in
> die erste Ableitung einsetzen um damit die Steigung zu
> bestimmen??

[ok] Richtig ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]