matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetig, (partiell) diff'bar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetig, (partiell) diff'bar
Stetig, (partiell) diff'bar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig, (partiell) diff'bar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Do 24.07.2008
Autor: jedi84

Aufgabe
Gegeben ist [mm] f:R^2\to [/mm] R mit
[mm] f(x,y):=\bruch{x^2y}{x^2+y^2},(x,y)\not=(0,0) [/mm]
f(x,y):=0, (x,y)=(0,0)
Ist f im Nullpunkt stetig, partiell differenzierbar, differenzierbar?

Hallo,

die Lösungen zu der Aufgabe habe ich, was mich interessiert, ist, wie man allgemein an solche Aufgaben heran geht.

Ich erhalte für die partiellen Ableitungen
[mm] \bruch{\partial f}{\partial x}=\bruch{2xy^3}{(x^2+y^2)^2} [/mm]
und
[mm] \bruch{\partial f}{\partial y}=\bruch{x^2(x^2-y^2)}{(x^2+y^2)^2} [/mm]

Nur sehe ich jetzt noch immer nicht, dass f stetig im Nullpunkt ist (was aber der Fall ist), dass f im Nullpunkt partiell differentierbar ist und das f im Nullpunkt nicht differenzierbar ist.

Danke im Voraus!

Gruß Jens

        
Bezug
Stetig, (partiell) diff'bar: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Do 24.07.2008
Autor: schachuzipus

Hallo Jens,

> Gegeben ist [mm]f:R^2\to[/mm] R mit
>  [mm]f(x,y):=\bruch{x^2y}{x^2+y^2},(x,y)\not=(0,0)[/mm]
>  f(x,y):=0, (x,y)=(0,0)
>  Ist f im Nullpunkt stetig, partiell differenzierbar,
> differenzierbar?
>  Hallo,
>
> die Lösungen zu der Aufgabe habe ich, was mich
> interessiert, ist, wie man allgemein an solche Aufgaben
> heran geht.
>  
> Ich erhalte für die partiellen Ableitungen
>  [mm]\bruch{\partial f}{\partial x}=\bruch{2xy^3}{(x^2+y^2)^2}[/mm] [ok]
>  
> und
>  [mm]\bruch{\partial f}{\partial y}=\bruch{x^2(x^2-y^2)}{(x^2+y^2)^2}[/mm] [ok]
>  
> Nur sehe ich jetzt noch immer nicht, dass f stetig im
> Nullpunkt ist (was aber der Fall ist), dass f im Nullpunkt
> partiell differentierbar ist und das f im Nullpunkt nicht
> differenzierbar ist.

Für den Stetigkeitsnachweis rechne in Polarkoordinaten, da wird alles wunderbar einfach:

Setze [mm] $x=r\cdot{}\cos(\phi)$, $y=r\cdot{}\sin(\phi)$, [/mm] wobei $r$: Länge des Vektors $(x,y)$ ist und [mm] $\phi$ [/mm] der Winkel, den $(x,y)$ mit der x-Achse einschließt.

Betrachte [mm] $\lim\limits_{r\downarrow 0} [/mm] ...$

Für den Nachweis der Existenz der partiellen Ableitungen bemühe mal die Definition:

Berechne [mm] $\lim\limits_{t\to 0}\frac{f((0,0)+t\cdot{}\vec{e}_i)-f((0,0))}{t}$, [/mm] $i=1,2$ und [mm] $\vec{e}_i$ [/mm] die Einheitsvektoren $(1,0), (0,1)$

Das ist auch nicht "wild"

Was die (totale) Diffbarkeit bzw. Nicht-Diffbarkeit in $(0,0)$ angeht, so würde ich auch da die Definition der totalen Diffbarkeit bemühen (habe ich aber jetzt noch nicht nachgerechnet)

>  
> Danke im Voraus!
>  
> Gruß Jens


LG

schachuzipus

Bezug
                
Bezug
Stetig, (partiell) diff'bar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Do 24.07.2008
Autor: jedi84

Erstmal danke für die schnelle Antwort.
Wenn ich das jetzt richtig verstanden habe, setze ich in f einfach die Polarkoordinaten für x und y ein und erhalte
[mm] f(x,y)=\bruch{r^3cos^2(\phi)sin(\phi)}{r^2(cos^2(\phi)+sin^2(\phi))}=r cos^2(\phi)sin(\phi) [/mm]

Der Grenzwert wäre dann wohl 0, auch wenn ich bisher nur vermute, dass [mm] \phi=0 [/mm] gilt für [mm] r\to [/mm] 0. Aber selbst wenn nicht, wäre ja cos*sin <= 1 und damit der Grenzwert 0.

An die Definition muss ich mich wohl nochmal setzen, denn das sagt mir im Moment noch gar nichts.

Darf man eigentlich generell immer eine Funktion so umschreiben, dass man (x,y) durch [mm] (r*cos(\phi),r*sin(\phi)) [/mm] ersetzt?

Bezug
                        
Bezug
Stetig, (partiell) diff'bar: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Do 24.07.2008
Autor: schachuzipus

Hallo nochmal,

> Erstmal danke für die schnelle Antwort.
>  Wenn ich das jetzt richtig verstanden habe, setze ich in f
> einfach die Polarkoordinaten für x und y ein und erhalte
>  
> [mm]f(x,y)=\bruch{r^3cos^2(\phi)sin(\phi)}{r^2(cos^2(\phi)+sin^2(\phi))}=r cos^2(\phi)sin(\phi)[/mm] [ok]
>  
> Der Grenzwert für  [mm] \red{r\downarrow 0} [/mm] wäre [mm] \red{\text{ist}} [/mm] dann wohl 0, auch wenn ich bisher nur
> vermute, dass [mm]\phi=0[/mm] gilt für [mm]r\to[/mm] 0. [kopfkratz3]

Da kann ich dir nicht ganz folgen, entscheidend ist hier, dass der obige Limes unabhängig vom Winkel [mm] $\phi$ [/mm] gegen 0(=f((0,0))) geht !


Aber selbst wenn

> nicht, wäre ja [mm] \red{|}\cos\red{^2(\phi)}*sin\red{(\phi)|} [/mm] <= 1 und damit der Grenzwert 0.

Eben, der GW ist also unabh. vom Winkel, egal wie sehr du auch rumeierst, um dich auf (0,0) zuzubewegen, der GW ist unabhängig vom Rumgeeiere 0

>  
> An die Definition muss ich mich wohl nochmal setzen, denn
> das sagt mir im Moment noch gar nichts.
>
> Darf man eigentlich generell immer eine Funktion so
> umschreiben, dass man (x,y) durch [mm](r*cos(\phi),r*sin(\phi))[/mm]
> ersetzt?

Im [mm] $\IR^2$ [/mm] schon, im [mm] $\IR^3$ [/mm] hat du zB. auch Zylinderkoordinaten oder Kugelkoordinaten (räumliche Polarkoordis) - das kann man auch auf höhere Dimensionen verallgemeinern

Schaue doch mal []hier vorbei ..



LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]