matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetige Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetige Funktion
Stetige Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Do 10.01.2008
Autor: mattemonster

Aufgabe
An welchen Stellen ist die Funktion [mm] f:\IR\to[0,1] [/mm] stetig?

[mm] f(x)=\begin{cases} \bruch{1}{q} & x=\bruch{p}{q} \in \IQ \backslash\{0\} \\ 1 & x=0 \\ 0 & x\in \IR \ \backslash \IQ \end{cases} [/mm]

wobei [mm] p\in\IZ,q\in\IN\backslash\{0\} [/mm] teilerfremd

Kann mir jemand bei der Aufgabe helfen?? Muss ich da jetzt die Umkehrabbildung finden und dann bei den einzelnen Punkten auf Stetigkeit prüfen?

        
Bezug
Stetige Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Do 10.01.2008
Autor: Somebody


> An welchen Stellen ist die Funktion [mm]f:\IR\to[0,1][/mm] stetig?
>  
> [mm]f(x)=\begin{cases} \bruch{1}{q} & x=\bruch{p}{q} \in \IQ \backslash\{0\} \\ 1 & x=0 \\ 0 & x\in \IR \ \backslash \IQ \end{cases}[/mm]
>  
> wobei [mm]p\in\IZ,q\in\IN\backslash\{0\}[/mm] teilerfremd
>  Kann mir jemand bei der Aufgabe helfen?? Muss ich da jetzt
> die Umkehrabbildung finden

Nein, die Umkehrfunktion von $f$ wird nicht gebraucht: sie existiert auch gar nicht, da z.B. $f(3/4)=f(1/4)=1/4$.

> und dann bei den einzelnen
> Punkten auf Stetigkeit prüfen?

Ich würde mir statt dessen folgendes klar machen: sei [mm] $x_0\in\IR$ [/mm] beliebig (also eventuell auch $=0$ bzw. [mm] $\in \IQ$), [/mm] dann gibt es für jedes noch so grosse [mm] $N\in \IN$ [/mm] ein [mm] $\delta [/mm] >0$ so dass für alle [mm] $\frac{p}{q}\in \IQ\;\cap\; ]x_0-\delta;x_0+\delta[\backslash\{x_0\}$ [/mm] (mit teilerfremdem $p,q$) gilt, dass $q>N$.
Das heisst, für jedes [mm] $x_0\in \IR$ [/mm] und jede noch so grosse natürliche Zahl $N$ gibt es eine [mm] $\delta$-Umgebung [/mm] von [mm] $x_0$, [/mm] in der, ausser eventuell an der Stelle [mm] $x_0$, [/mm] $f$ nur Werte vom Betrag [mm] $<\frac{1}{N}$ [/mm] annimmt. Daraus folgt sogleich, dass $f$ an der Stelle [mm] $x_0$ [/mm] genau dann stetig ist, wenn [mm] $f(x_0)=0$ [/mm] ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]