matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStetige Verteilung mit Dichte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Stetige Verteilung mit Dichte
Stetige Verteilung mit Dichte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Verteilung mit Dichte: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:11 Fr 18.07.2014
Autor: ATDT

Aufgabe
Die reellwertige Zufallsvariable X habe eine absolut stetige Verteilung mit Dichte fx: [mm] \IR \to [/mm] [0, [mm] \infty), [/mm]

fx(x) = [mm] \bruch{3}{2} [/mm] * [mm] x^2(x+1) [/mm] * [mm] 1_{[-1,1]} [/mm] (x)

Berechnen Sie P([X [mm] \ge [/mm] 0]), E(X), Var(X). Bestimmen und zeichnen Sie die Verteilungsfunktion von [mm] F_{x} [/mm] von X

Liebe Forenteilnehmer,

Den Erwartungswert und die Varianz habe ich so ausgerechnet.

E(X) = [mm] \integral_{-1}^{1} [/mm] * x * [mm] \bruch{3}{2} [/mm] * [mm] x^2 [/mm] * (x+1) dx
...
E(X) = 0.6

[mm] E(X^2) [/mm] analog mit [mm] E(X^2) [/mm] = 0.6

Var(X) = [mm] E(X^2) [/mm] - [mm] (E(X))^2 [/mm] = 0.6-0.36=0.24

Ist das soweit korrekt?

Wie berechne ich hier P([X [mm] \ge [/mm] 0])?
Brauche auch Hilfe bei der Verteilungsfunktion.
Die Verteilungsfunktion verläuft nur zwischen - 1 und 1, richtig? Außerhalb ist sie immer 0. Nur wie zeichne ich diese Kurve?

Vielen Dank im Voraus

        
Bezug
Stetige Verteilung mit Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Fr 18.07.2014
Autor: Fry

Hey,

also dein Ansatz für die Berechnung stimmt!

[mm]P(X\ge 0)=1-P(X<0)[/mm]

Letztere Wkeit kannst du dann über die Verteilungsfunktion bestimmt
[mm]F(t):=P(X\le t)[/mm] mit [mm]t\in\mathbb R[/mm]

Also deine Aussage trifft für die Dichtefunktion zu: Die ist außerhalb des Intervalls [-1,1] =0.
Dies kann ja gar nicht auf F zutreffen, weil für wachsendes t entweder nicht oder etwas Positives hinzukommt, also F ist monoton wachsend, im Falle absolut stetig verteilter Zufallsgrößen sogar sreng monoton wachsend. Ferner muss [mm]\lim_{t\to -\infty}F(t)=0[/mm] und [mm]\lim_{t\to\infty}F(t)=1[/mm] sein.

Für den absolut stetigen Fall gilt ja [mm]F(t)=\int_{-\infty}^{t}f(x)dx[/mm] für [mm]t\in\mathbb R[/mm]



Also: [mm]F(t)=0[/mm] für [mm]t<-1[/mm] und [mm]F(t)=1[/mm] für [mm]t>1[/mm]
und für [mm]-1\le t\le 1[/mm] musst noch das Integral genau ausrechnen.

Zur Überprüfung kannst du dann auch schauen, ob tatsächlich [mm]F(-1)=0[/mm] und [mm]F(1)=1[/mm] (dies muss gelten, da F stetig ist).

LG
Fry

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]