matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:59 Di 27.11.2007
Autor: dodov8423

Guten morgen.
Ich habe mal eine Frage bezüglich einer Funktion [mm] f:\IR\to\IR. [/mm] Gegeben ist [mm] \alpha\in\IR. [/mm]
Die Funktion ist definiert durch
[mm] f(x)=\left\{\begin{matrix} -x^2, & \mbox{für }x\le\mbox{0 } \\ \alpha(cos(x)-1), & \mbox{für } 0 < x\le \pi \mbox{ } \\ -1, & \mbox{für } x > \pi \mbox{ } \end{matrix}\right. [/mm]
Hierbei handelt es sich ja um die Fallunterscheidung bzw. Komposition. Das heißt ich jede Funktion einzeln auf deren definierten x untersuchen. Also z.B. [mm] -x^2 [/mm] für x [mm] \le [/mm] 0 nur die negateiven Werte auf der x- Achse. Selbes gilt für [mm] \alpha(cos(x)-1) [/mm] für [mm] 0 für -1 weiß ich nicht was ich machen soll. Hier kann ich doch garnichts einsetzen. Da ich aber weiß, dass es sich hierbei um eine gerade parallel zur x- Achse handelt, und ich sie erst für alle Werte [mm] x>\pi [/mm] untersuchen soll. Ist es gut möglich, dass die Kompositionen dieser Funktionen Stetig sind. Ist es am besten, wenn ich mir dazu eine Skizze mache?
P.S. Stetigkeit war doch, dass die Funktion keine Lücke haben darf richtig? Also sie muss für alle Werte x definiert sein. Wenn nicht, ist sie nicht Stetig.


Mit freundlichen Grüßen Domenick

        
Bezug
Stetigkeit: Grenzwerte
Status: (Antwort) fertig Status 
Datum: 10:47 Di 27.11.2007
Autor: Roadrunner

Hallo Domenick!


So ganz erschließt sich mir nicht, was Deine eigentliche Frage ist. [kopfkratz3]

Zum einen musst du hier bei der Winkelfunktion immer im Bogenmaß rechnen.

Zum anderen sollst Du hier bestimmt den Wert [mm] $\alpha$ [/mm] derart bestimmen, dass diese zusmmengesetzte Funktion stetig ist. Dafür musst Du an den Nahtstellen (hier also: [mm] $x_1 [/mm] \ = \ 0$ sowie [mm] $x_2 [/mm] \ = \ [mm] \pi$ [/mm] ) die jeweiligen Grenzwerte (linksseitig und rechtsseitig) ermitteln. Diese müssen dann auch jeweils übereinstimmen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Di 27.11.2007
Autor: dodov8423

Super dankeschön zunächst für den Tipp!
Die Antwort ist jedenfalls das was ich mir erhofft hatte :-)
Also das mit dem links- und rechtsseitigen Grenzwert wäre meine zweite Überlegung gewesen. Tatsächlich soll ich gucken, für welches Element [mm] \alpha \in \IR [/mm] Stetig ist. Allerdings hätte ich das halt so gemacht, dass ich die einzelnen Funktionen Skizziert hätte. Aber das würde glaube ich ziemlich lange dauern. Wen ich den links- und rechtsseitigen Grenzwert nehme, reicht das dann, wenn ich nur [mm] \alpha(cos(x)-1) [/mm] für [mm] 0\pi [/mm] weiß ich ja im Prinzip wie diese Funktionen aussehen. Ich müsse dann halt nur rauskriegen, wo zwischen 0 und [mm] \pi [/mm] meine funktion [mm] \alpha(cos(x)-1) [/mm] meine Funktion -1 trifft, damit diese dann stetig ist.
Und dann (und leider auch mien Hauptproblem), wie berechne ich denn den links- und rechtsseitigen Grenzwert??? Gibt es dort eine einfache Anwendung?
Ich danke schonmal im Vorraus.

Mit freundlichen Grüßen Domenick

Bezug
                        
Bezug
Stetigkeit: hier bei x = 0
Status: (Antwort) fertig Status 
Datum: 09:48 Mi 28.11.2007
Autor: Roadrunner

Hallo Domenick!


Wie in Deiner anderen Frage gestellt, benötigst Du hier für den linksseitigen sowie rechtsseitigen Grenzwert nicht die h-Methode. Du musst lediglich beachten, welche Funktionsvorschrift für den linksseitigen sowie rechtsseitigen Grenzwert gilt.


Hier mal am Beispiel an der Stelle [mm] $x_1 [/mm] \ = \ 0$ :

Linksseitiger Grenzwert:
[mm] $$\limes_{x\rightarrow 0\uparrow}f(x) [/mm] \ = \ [mm] \limes_{x\rightarrow 0\uparrow}-x^2 [/mm] \ = \ [mm] -0^2 [/mm] \ = \ ...$$

Rechtsseitiger Grenzwert:
[mm] $$\limes_{x\rightarrow 0\downarrow}f(x) [/mm] \ = \ [mm] \limes_{x\rightarrow 0\downarrow}\alpha*\left[\cos(x)-1\right] [/mm] \ = \ [mm] \alpha*\left[\cos(0)-1\right] [/mm] \ = \ ...$$

Und diese beiden Grenzwerte müssen nun übereinstimmen, damit die Funktion an der Stelle [mm] $x_1 [/mm] \ = \ 0$ stetig ist.


Dieselbe Überlegung musst Du anschließend dann noch für [mm] $x_2 [/mm] \ = \ [mm] \pi$ [/mm] durchführen und [mm] $\alpha$ [/mm] ermitteln.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]