matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Mo 03.12.2007
Autor: Mathefragen

Hallo! Ich soll bestimmen, ob die Funktionen stetig sind, oder nicht.. Dies wollte ich mit dem folgenden Kriterium machen: [mm] \limes_{x\rightarrow\x0} [/mm] f(x) = f(x0). Dies soll ich für foglende Funktion bestimmen:
[mm] f(x)=\begin{cases}\wurzel{1-x} , & \mbox{für } |x| \le 1 \\ x, & \mbox{für } |x|>1 \mbox{ } \end{cases}. [/mm] Um nun die Stetigkeit zu überprüfen, habe ich folgendes gemacht: [mm] \limes_{x\rightarrow\x0} \wurzel{1-x}=0 [/mm] .. es soll aber x rauskommen oder? Denn es soll ja f(x0) rauskommen und das ist doch gleich x0. Ich bin irgendwie verwirrt, wär super, wenn mir da jmd. weiterhelfen könnte! :-)

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 03.12.2007
Autor: max3000

Hallo.

Deine kritischen Punkte sind ja 1 und -1. Desswegen musst du in diesen Punkten die Stetigkeit nachweisen. Dass die Funktion in allen anderen Punkten stetig ist, folgt aus einigen Sätzen, die ihr sicherlich in der Vorlesung gemachtg habt, zum Beispiel Polynome sind Stetig, Wurzelfunktion ist stetig, Komposition stetiger Funktionen ist stetig.

Aber nun zu den kritischen Punkten, es muss der rechts- und linksseitige Grenzwert gleich sein.

[mm] \limes_{x\rightarrow1-}\wurzel{1-x}=0 [/mm]
[mm] \limes_{x\rightarrow1+}x=1 [/mm]

Beide Grenzwerte sind ungleich, also ist die Funktion unstetig.

Ach ja: Schreib doch bitte mal deinen Studiengang in dein Profil. Das ist nämlich die Definition von Stetigkeit für Ingenieure ^^.

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mo 03.12.2007
Autor: Mathefragen

Dankeschön! :-) Aber warum ist der [mm] \limes_{x\rightarrow\(1-)} [/mm] = 0? Ich dachte, dass da [mm] \wurzel{2} [/mm] herauskommt, denn [mm] \wurzel{1-(-1)} [/mm] macht doch [mm] \wurzel{2}, [/mm] oder bin ich da auf dem total falschen  Nenner? Und was ist denn in dem Fall mein x0? und was mein f(x0)? *verwirrtsei*

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Mo 03.12.2007
Autor: max3000

Wir haben gesagt [mm] x\rightarrow1- [/mm]

1- ist nicht das selbe wie -1.
1- bedeutet, dass sich der Wert x an die 1 annähert, aber von links, also immer noch kleiner als 1 ist.

Bezug
                                
Bezug
Stetigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:38 Mi 05.12.2007
Autor: Mathefragen

Hallo! Ich habe noch eine Verständnisfrage zur Stetigkeit, die mir nicht ganz klar ist. Wieso kann ich daraus schließen, dass die WUrzelfunktion [mm] \wurzel{1-x^{4}} [/mm] für Betragx [mm] \le [/mm] 1 stetig ist, weil sie eine Umkehrfunktion von Potenzfunktionen ist?

Bezug
                                        
Bezug
Stetigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Fr 07.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]