Stetigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:28 So 02.03.2008 | Autor: | hooover |
Aufgabe | Finden Sie eine Funktion g: [mm] \IR^{2} \to \IR, [/mm] welche in (0,0) partiell stetig, jedoch nicht stetig ist. |
Hallo Liebe Leute,
da ich mich erst seit kurzem mit dem Thema befasse, bin ich mir nicht sicher ob meine Lösung richtig ist.
Ich zeig euch mal was ich hier gamcht habe:
Also als Funktion habe ich [mm] \bruch{1}{x+y} [/mm] gewählt. Ich kann ober nicht sagen ob sie auch wohl definiert ist.
um die partielle Stetigkeit zu zeigen geht man ja wie folgt vor:
[mm] f(x_{n},0) \to [/mm] (0,0)
[mm] f(x_{n},0)=\bruch{1}{x_{n}+0}=\bruch{1}{x_{n}} $\overrightarrow{n\to\infty}$ [/mm] 0 = f(0,0)
[mm] f(0,y_{n}) \to [/mm] (0,0)
[mm] f(0,y_{n})=\bruch{1}{0+y_{n}}=\bruch{1}{y_{n}} $\overrightarrow{n\to\infty}$ [/mm] 0 = f(0,0)
=> f ist partiell stetig in (0,0)
so jetzt soll noch gezeigt werden, dass f nicht (komplett) stetig ist. Dazu brauch man doch nur eine Folge finden die nicht stetig ist.
Also habe ich diese gewählt:
[mm] f(\bruch{1}{n}, 1-\bruch{1}{n}) \to [/mm] (0 ,0)
[mm] f(\bruch{1}{n}, 1-\bruch{1}{n}) [/mm] = [mm] \bruch{1}{\bruch{1}{n}, 1-\bruch{1}{n}}=1$\overrightarrow{n\to\infty}$ [/mm] 1 [mm] \not [/mm] f(0,0)
was zu zeigen war.
stimmt das? oder habe ich da fehler gemacht.
vielen Dank für die antworten
gruß hooover
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:53 So 02.03.2008 | Autor: | Zneques |
Hallo,
$ [mm] f(x_{n},0) \to [/mm] $ f(0,0) mit [mm] x_n\to [/mm] 0 [mm] \Rightarrow \bruch{1}{x_n}\to\pm\infty [/mm] für [mm] n\to\infty
[/mm]
Somit nicht :
>$ [mm] f(x_{n},0)=\bruch{1}{x_{n}+0}=\bruch{1}{x_{n}} [/mm] $ $ [mm] \overrightarrow{n\to\infty} [/mm] $ 0 = f(0,0)
$ [mm] f(\bruch{1}{n}, 1-\bruch{1}{n}) \to [/mm] f(0 [mm] ,1)\not= [/mm] f(0,0)$
Dein Beispiel passt also nicht. Mal nocht etwas rumtesten/-suchen.
Ciao.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:22 So 02.03.2008 | Autor: | hooover |
Vielen Dank für die Antwort.
versthe irgendwie nicht warum [mm] x_{n} [/mm] gegen Null und n gegen unendlich geht.
Wie geth man denn hier systematisch vor, um eine passende Funktion zu finden?
Ist das Ziel etwa, das sich da was rauskürzt oder funktion gleich Null wird?
etwa wie bei dieser Funktion
[mm] f(x,y)=\bruch{xy}{x^2+y^2}
[/mm]
[mm] f(x_{n}, [/mm] 0) = [mm] \bruch{0}{x_{n}} [/mm] = 0 [mm] $\overrightarrow{n\to\infty}[/mm] [/mm] 0 = f(0,0)$
da muß man doch irgendwie nach nem Schema vorgehen müssen ohne ewig lang funktioen zu suchen die passen könnten.
Vielen Dank
gruß hooover
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:39 Mo 03.03.2008 | Autor: | Zneques |
> [mm] f(x,y)=\bruch{xy}{x^2+y^2}
[/mm]
Das klingt doch schon mal ganz ordentlich.
Die Funktion ist jedoch für (0,0) nicht definiert.
Du musst also für (0,0) selbst einen Wert einfügen.
> [mm] f(x_{n},0)=\bruch{0}{x_{n}}=0\quad\overrightarrow{n\to\infty}\quad0=f(0,0)
[/mm]
Mit der Bemerkung [mm] x_n\to [/mm] 0 wäre das schonmal ok.
Wenn nun 0 der Wert f(0,0) ist, dann hast du somit Stetigkeit entlang der x-Achse.
y-Achse ?
Warum ist f nicht stetig ?
Für welche [mm] (x_n,y_n)\to [/mm] (0,0) erhält man keine stetige Fkt., da [mm] f(x_n,y_n)\nrightarrow [/mm] f(0,0)=0 ?
Ciao.
|
|
|
|