matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mo 18.05.2009
Autor: schlumpfinchen123

Aufgabe
Sei f: [mm] \IR^n \to \IR [/mm] durch

f(x,y) := [mm] \bruch{x^3}{x^2 + y^2} [/mm] falls [mm] \vektor{x \\ y} \not= \vektor{0 \\ 0} [/mm]
f(x,y) := 0, falls [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{0 \\ 0} [/mm]

definiert.
Untersuchen sie, ob f in [mm] \vektor{0 \\ 0} [/mm] stetig ist.

Hallo,

kann mir jemand bei dieser Aufgabe weiterhelfen.
Ich habe irgendwie das Gefühl dass diese Funktion in [mm] \vektor{0 \\ 0} [/mm] nicht stetig ist und dass es eine Folge [mm] (x_k, y_k) [/mm] geben müsste die gegen [mm] \vektor{0 \\ 0} [/mm] konvergiert, aber bei der die Folge der Funktionswerte [mm] f(x_k, y_k) [/mm] nicht gegen [mm] f(\vektor{0 \\ 0}) [/mm] =0 konvergiert. Womit ja die Funktion in [mm] \vektor{0 \\ 0} [/mm] nach dem Folgenkriterium nicht stetig wäre. Ich kann solch eine Folge allerdings nicht finden. Vielleicht täuscht mich auch mein Gefühl und  
f ist an dieser Stelle stetig.
Wenn ja, wie könnte ich dies am besten nachweisen.
vielen dank schon mal!

Viele grüße,
schlupfinchen.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mo 18.05.2009
Autor: fred97


> Sei f: [mm]\IR^n \to \IR[/mm] durch
>
> f(x,y) := [mm]\bruch{x^3}{x^2 + y^2}[/mm] falls [mm]\vektor{x \\ y} \not= \vektor{0 \\ 0}[/mm]
>  
> f(x,y) := 0, falls [mm]\vektor{x \\ y}[/mm] = [mm]\vektor{0 \\ 0}[/mm]
>  
> definiert.
>  Untersuchen sie, ob f in [mm]\vektor{0 \\ 0}[/mm] stetig ist.
>  Hallo,
>  
> kann mir jemand bei dieser Aufgabe weiterhelfen.
> Ich habe irgendwie das Gefühl dass diese Funktion in
> [mm]\vektor{0 \\ 0}[/mm] nicht stetig ist und dass es eine Folge
> [mm](x_k, y_k)[/mm] geben müsste die gegen [mm]\vektor{0 \\ 0}[/mm]
> konvergiert, aber bei der die Folge der Funktionswerte
> [mm]f(x_k, y_k)[/mm] nicht gegen [mm]f(\vektor{0 \\ 0})[/mm] =0 konvergiert.
> Womit ja die Funktion in [mm]\vektor{0 \\ 0}[/mm] nach dem
> Folgenkriterium nicht stetig wäre. Ich kann solch eine
> Folge allerdings nicht finden. Vielleicht täuscht mich auch
> mein Gefühl und  
> f ist an dieser Stelle stetig.
> Wenn ja, wie könnte ich dies am besten nachweisen.
>  vielen dank schon mal!

Mit Polarkoordinaten $x = [mm] rcos(\phi), [/mm] y = [mm] rsin(\phi)$ [/mm] siehst Du

$|f(x,y)| = [mm] \bruch{r^3|cos^3(\phi)|}{r^2} \le [/mm] r = [mm] \wurzel{x^2+y^2}$ [/mm]

Damit: $|f(x,y)| [mm] \to [/mm] 0 = f(0,0)$ für $(x,y) [mm] \to [/mm] (0,0)$


FRED





>  
> Viele grüße,
>  schlupfinchen.


Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Mo 18.05.2009
Autor: schlumpfinchen123

Hallo fred,

kann man das auch anders zeigen, da wir in der Vorlesung noch nicht mit Polarkoordinaten gearbeitet haben!?



Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mo 18.05.2009
Autor: fred97


> Hallo fred,
>
> kann man das auch anders zeigen,

Ja,

für x [mm] \not= [/mm] 0 ist $|f(x,y)| [mm] \le \bruch{|x|^3}{x^2} [/mm] = |x|$

und

  für x = 0 ist  $|f(x,y)| = 0$

Insgesamt: [mm] $|f(x,y)|\le [/mm] |x|$


FRED



> da wir in der Vorlesung
> noch nicht mit Polarkoordinaten gearbeitet haben!?
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]