matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit, Beweis zu Corollar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit, Beweis zu Corollar
Stetigkeit, Beweis zu Corollar < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit, Beweis zu Corollar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Di 09.03.2010
Autor: ChopSuey

Aufgabe
Sei $\ f: D [mm] \to \IR [/mm] $ stetig im Punkt $\ p [mm] \in [/mm] D $ und $\ f(p) [mm] \not= [/mm] 0$. Dann ist $\ f(x) [mm] \not= [/mm] 0 $ für alle $\ x $ in einer Umgebung von $\ p $m d.h. es existiert ein $\ [mm] \delta [/mm] > 0 $, so dass

$\ f(x) [mm] \not= [/mm] 0 $ für alle $\ x [mm] \in [/mm] D $ mit $\ | x-p | < [mm] \delta [/mm] $

Hallo,

das ist ein Corollar aus O.Forster "Analysis 1" s.109.

Ich verstehe den Beweis leider nicht so ganz und würde mich freuen, wenn mir dabei jemand helfen kann.

Beweis:

Zu $\ [mm] \varepsilon [/mm] := | f(p) | > 0 $ existiert ein $\ delta > 0 $, so dass $\ | f(x) - f(p) | < [mm] \varepsilon [/mm] $ für alle $\ x [mm] \in [/mm] D $ mit $\ | x-p | < [mm] \delta [/mm] $.

Bis hier hin ist ja noch nix passiert, da ist alles klar.

Weiter:
Daraus folgt  $| f(x) | [mm] \ge [/mm] |f(p)| - | f(x) - f(p) | > 0 $ für alle  $\ x [mm] \in [/mm] D $ mit $\ | x-p | < [mm] \delta [/mm] $.

Diese Ungleichung verstehe ich nicht ganz.

Mir ist klar, dass  $ |f(p) | > |f(x) - f(p) | > 0 [mm] \gdw [/mm] |f(p) |- |f(x) - f(p) | > 0 $

Doch warum ist $\ | f(x) | [mm] \ge [/mm] |f(p)| - | f(x) - f(p) | $ ?

Es muss doch stetige Funktionen geben, die an einer bestimmten Stelle ihres Definitionsbereiches stetig sind, diese Stelle aber in einer Umgebung liegt, in der auch eine Nullstelle der Funktion existiert, oder nicht?

Gruß
ChopSuey

        
Bezug
Stetigkeit, Beweis zu Corollar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Di 09.03.2010
Autor: straussy


> Mir ist klar, dass  [mm]|f(p) | > |f(x) - f(p) | > 0 \gdw |f(p) |- |f(x) - f(p) | > 0[/mm]

Klar! So sind [mm]\epsilon[/mm] und [mm]f(x)[/mm] definiert.  

>  
> Doch warum ist [mm]\ | f(x) | \ge |f(p)| - | f(x) - f(p) |[/mm] ?

Das folgt aus der Dreiecksungleichung [mm]|a|+|b|\geq |a+b| [/mm]. Setze [mm]a+b=f(p)[/mm], [mm]a=f(x)[/mm] und [mm]b=f(p)-f(x)[/mm].    

>  
> Es muss doch stetige Funktionen geben, die an einer
> bestimmten Stelle ihres Definitionsbereiches stetig sind,
> diese Stelle aber in einer Umgebung liegt, in der auch eine
> Nullstelle der Funktion existiert, oder nicht?

Klar geht das. Aber dann verkleinert man die Umgebung halt so lange, bis die Nullstelle nicht mehr drin liegt.

Gruß
Tobias

Bezug
                
Bezug
Stetigkeit, Beweis zu Corollar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Di 09.03.2010
Autor: ChopSuey

Hallo Tobias,

saugeil, alles sofort verstanden ;-)

Danke für Deine Antwort.
Die Dreiecksungleichung hätte ich sehen müssen.

Schönen Abend noch,
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]