matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit & Definitonslücken
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Stetigkeit & Definitonslücken
Stetigkeit & Definitonslücken < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit & Definitonslücken: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 15:44 So 04.12.2011
Autor: Nicky-01

Aufgabe
Bestimmen Sie alle Definitionslücken der folgenden Funktionen. Prüfen Sie außerdem für jede Definitionslücke, ob die Funktion dort stetig ergänzbar ist und wen ja, durch welchen Funktionswert!

[mm] a)\bruch {x^2-3x+5}{x-1} [/mm]
[mm] b)\bruch {x^2-3x+2}{x-1} [/mm]
[mm] c)\bruch {-2x^2-x+3}{1-x^2} [/mm]

Hallo,
leider haben wir weder in der Vorlesung noch in dem Tutorium Stetigkeit besprochen. Daher weiß ich leider nicht wie ich da vorgehen muss.
Habe im Internet gelesen, dass man den Nenner =0 setzen und auflösen soll und den Wert dann auch im Zähler einsetze soll,
und würde dieser dann auch Null ergeben würde man wissen, dass es sich um eie hebbare Lücke handelt,
wäre dies nicht der fall, würde es sich um eine Pollstelle handeln und würde nicht stetig fortsetzbar sein.
wenn dies stimmt,

dann müsste:
a) für x=1 im Nenner Null ergeben, allerdings nicht im Zähler, dort würde es 3 ergeben.
Also müsste es sich dort doch um Pollstelle handeln.
Wenn dies stimmt, ist doch die Funktion auch nicht stetig oder?
oder kann man das auch irgendwie anders herausfinden?

bei b) wäre der Nenner auch für x=1 =0 und für x=1 wäre auch der Zähler Null, also hätte man dort eine hebbare Lücke,
aber wie bekommt man raus, wo diese Defiitionslücke ist und für welchen Funtionswert sie stetig ergänzbar ist?

c) wäre für x=1 und x=-1 im Nenner 0,
für x=-1 wäre der Zähler allerdings nicht null
und für x=1 wäre der Zähler auch 0 ....
wie geht man denn dann dort vor?

Sind diese erste Gedankengänge überhaupt richtig?
oder geht man anders vor um herauszufinden ob eine Fuktion stetig ist oder nicht?


        
Bezug
Stetigkeit & Definitonslücken: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 So 04.12.2011
Autor: schachuzipus

Hallo Nicky-01,


> Bestimmen Sie alle Definitionslücken der folgenden
> Funktionen. Prüfen Sie außerdem für jede
> Definitionslücke, ob die Funktion dort stetig ergänzbar
> ist und wen ja, durch welchen Funktionswert!
>  
> [mm]a)\bruch {x^2-3x+5}{x-1}[/mm]
>  [mm]b)\bruch {x^2-3x+2}{x-1}[/mm]
>  
> [mm]c)\bruch {-2x^2-x+3}{1-x^2}[/mm]
>  Hallo,
> leider haben wir weder in der Vorlesung noch in dem
> Tutorium Stetigkeit besprochen. Daher weiß ich leider
> nicht wie ich da vorgehen muss.
>  Habe im Internet gelesen, dass man den Nenner =0 setzen
> und auflösen soll und den Wert dann auch im Zähler
> einsetze soll,
>  und würde dieser dann auch Null ergeben würde man
> wissen, dass es sich um eie hebbare Lücke handelt,
>  wäre dies nicht der fall, würde es sich um eine
> Pollstelle handeln und würde nicht stetig fortsetzbar
> sein.

Jo, wenn die Nullstellen in gleicher Vielfachheit vorkommen!

>  wenn dies stimmt,
>  
> dann müsste:
>  a) für x=1 im Nenner Null ergeben, allerdings nicht im
> Zähler, dort würde es 3 ergeben.
>  Also müsste es sich dort doch um Pollstelle handeln. [ok]
>  Wenn dies stimmt, ist doch die Funktion auch nicht stetig
> oder?

Stetig ist sie in [mm]x=1[/mm] sowieso nicht, da sie dort nicht definiert ist.

Sie ist hier aber auch nicht stetig fortsetzbar

>  oder kann man das auch irgendwie anders herausfinden?
>  
> bei b) wäre der Nenner auch für x=1 =0 und für x=1 wäre
> auch der Zähler Null, also hätte man dort eine hebbare
> Lücke,


[ok]

> aber wie bekommt man raus, wo diese Defiitionslücke ist
> und für welchen Funtionswert sie stetig ergänzbar ist?

Verstehe ich nicht, die Funktion ist für [mm]x=1[/mm] nicht definiert.

Nach Herauskürzen von [mm](x+1)[/mm] ergibt sich [mm]x-2[/mm]

An der Stelle [mm]x=1[/mm] ist das [mm]1-2=-1[/mm]

Also kannst du durch die zusätzliche Definition [mm]f(1):=-1[/mm] die Ausgangsfunktion in [mm]x=1[/mm] stetig fortsetzen

>  
> c) wäre für x=1 und x=-1 im Nenner 0,
>  für x=-1 wäre der Zähler allerdings nicht null
>  und für x=1 wäre der Zähler auch 0 ....
>  wie geht man denn dann dort vor?

Nun, du kannst analog zu b) die Funktion in [mm]x=1[/mm] stetig ergänzen durch [mm]f(1):=??[/mm]

In [mm]x=-1[/mm] hingegen liegt eine Polstelle vor.

Das kannst du so begründen, wie du in der Einleitung geschrieben hast, oder mal [mm]\lim\limits_{x\to -1^+,-1^-}f(x)[/mm] berechnen ...

>  
> Sind diese erste Gedankengänge überhaupt richtig?
>  oder geht man anders vor um herauszufinden ob eine Fuktion
> stetig ist oder nicht?

Bei gebrochen-rationalen Funktionen ist die Untersuchung von Zähler und Nenner auf Nullstellen, also die Faktorisierung von Zähler und Nenner, ein probates Mittel!

Gruß

schachuzipus

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]