matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationStetigkeit Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Stetigkeit Integral
Stetigkeit Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Mo 09.06.2008
Autor: He_noch

Hallo!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe ein Lebesgue-Integral einer stetigen Funktion.
Ist das Integral (bzw. die Stammfunktion) stetig?

Bei "normales" Integralen ist das ja so, oder?

Danke für die Hilfe

Gruß He_noch

        
Bezug
Stetigkeit Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Mo 09.06.2008
Autor: fred97

stetige Funktionen sind Riemannintegrierbar,  Riemannint. Fktn. sind Lebesgueint. und R-Integral. = L-Integral.

Hilft Dir das?

FRED

Bezug
                
Bezug
Stetigkeit Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Mo 09.06.2008
Autor: He_noch


> stetige Funktionen sind Riemannintegrierbar,  Riemannint.
> Fktn. sind Lebesgueint. und R-Integral. = L-Integral.
>  
> Hilft Dir das?

Mein Konkretes Problem ist:
Ich möchte wissen, ob G(s) = [mm] \integral_{0}^{\infty}{e^{-sx} dF(x)} [/mm] stetig ist.
Nach deinen Worten weiß ich jetzt, da [mm] e^{-sx} [/mm] stetig ist, dass das Integral existiert und mit dem entsprechenden Riemann-Integral übereinstimmt, d.h, dass eine Stammfunktion existiert.
Nur, weiß ich jetzt auch, dass die Stammfunktion stetig ist?

Danke für die Hilfe

Gruß He_noch

Bezug
                        
Bezug
Stetigkeit Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Mo 09.06.2008
Autor: fred97

Moment, Moment.

1. Meine Antwort bezog sich auf eine Integrationsbereich der Form [a,b].

2. Was ist F ? Eigenschaften..... ?

3. Ist Dei Integral ein uneigentliches Riemann-Stieltjes Integral ? oder ein Lebesgue-Integral oder...........................?

4. Der Begriff " Stammfunktion"  impliziert doch schon die Differenzierbarkeit. Oder meinst Du etwas anderes ?

FRED

Bezug
                                
Bezug
Stetigkeit Integral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:21 Mo 09.06.2008
Autor: He_noch

Ohh....
Also:
1. F soll irgendeine Verteilungsfunktion sein.

> 3. Ist Dei Integral ein uneigentliches Riemann-Stieltjes
> Integral ? oder ein Lebesgue-Integral
> oder...........................?

2. Mein integral ist [mm] \integral_{0}^{\infty}{e^{-sx} dF(x)}. [/mm]
Mehr weiß ich nicht und ich kenn leider die Unterschiede der von dir genannten Integrale nicht, aber bei der Aufgabe steht nichts dabei, um was für eine "Integralart" es sich handeln soll.

3. Jetzt wird da weiter behauptet, dass die Funktion [mm] G(s)=\integral_{0}^{\infty}{e^{-sx} dF(x)} [/mm]  stetig sei und ich frage mich, warum.

Sorry, falls ich mich bis jetzt missverständlich ausgedrückt habe, aber die ganzen Ausdrücke sind mir ein wenig fremd...

Danke für deine Mühe!

Gruß
He_noch

Bezug
                                        
Bezug
Stetigkeit Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Mi 11.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Stetigkeit Integral: ähnliche Frage
Status: (Frage) beantwortet Status 
Datum: 13:38 Sa 12.07.2008
Autor: ferdi

Hi, ich habe ein ganz ähnliches Problem. In meinem Fall habe ich eine Funktion [mm] \psi [/mm] (x, t), die stetig und beschränkt in t ist. Jetzt sei [mm] \lambda_F(t) [/mm] = [mm] \integral \psi(x, [/mm] t) dF(x). F ist dabei eine Verteilungsfunktion, es handelt sich also sozusagen um ein Riemann-Stieltjes Integral. Ich möchte nun wissen, warum [mm] \lambda_F(t) [/mm] wieder stetig ist.

Allgemeinere Frage:
Unter welcher Voraussetzung ist das integral über eine stetige Funktion wieder stetig (nicht nur bei RS-Integralen)??


Bezug
                
Bezug
Stetigkeit Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Do 17.07.2008
Autor: Merle23

Schau mal hier, da ist es genau erklärt.

[]Wiki-Link.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]