matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit Prinzip
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit Prinzip
Stetigkeit Prinzip < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Prinzip: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:03 Do 08.04.2010
Autor: LordPippin

Hallo,
ich gucke mir gerade Stetigkeit von Funktionen an.
Als Beispiel möchte ich gucken, ob [mm] f(x)=x^2 [/mm] auf ganz R stetig ist. Dafür wende ich das Epsilon-Delta-Kriterium an.

Sei [mm] x\in\IR [/mm] mit [mm] |x-x_{0}|<\varepsilon [/mm]

Dann bekomme ich ja: [mm] |x^{2}-x_{0}^{2}|=|x^{2}-2xx_{0}+x_{0}^{2}-2x_{0}^{2}+2xx_{0}|=|(x-x_{0})^{2}+2xx_{0}-2x_{0}^{2}|\le|x-x_{0}|^{2}+2|x_{0}||x-x_{0}| [/mm]

So. Bis dahin verstehe ich das alles. Der Sinn der [mm] \varepsilon-\delta-Umgebung [/mm] ist es ja, ein [mm] \delta [/mm] in Abhängigkeit von [mm] \varepsilon [/mm] und [mm] x_{0} [/mm] zu finden.

Ich weiß ja jetzt, dass
[mm] |x^{2}-x_{0}^{2}|\le|x-x_{0}|^{2}+2|x_{0}||x-x_{0}|<\delta^{2}+2|x_{0}|\delta=\varepsilon [/mm] ist.

Jetzt würde ich dann mit dieser Gleichung mein [mm] \delta [/mm] berechnen und kriege ja wegen der quadratischen Gleichung zwei [mm] \delta [/mm] raus: [mm] \delta_{1,2}=x_{0}\pm\wurzel{x_{0}^{2}+\varepsilon} [/mm]

Ist das jetzt das Ergebnis und kann ich es irgendwie überprüfen?

Jetzt habe ich noch eine andere Version zu einer anderen Ausfabe gesehen:
Da wurde ab hier [mm] \delta^{2}+2|x_{0}|\delta=\varepsilon [/mm] anders weiter gerechnet. Die haben [mm] \delta^{2}=\bruch{\varepsilon}{2} [/mm] und [mm] 2|x_{0}|\delta=\bruch{\varepsilon}{2} [/mm] gesetzt und zwei andere [mm] \delta [/mm] rausbekommen. Hier wären das: [mm] \delta=\wurzel{\bruch{\varepsilon}{2}} [/mm] und [mm] \delta=\bruch{\varepsilon}{2|x_{0}|}. [/mm]

Dann Setze [mm] \delta=min\{\wurzel{\bruch{\varepsilon}{2}}, \bruch{\varepsilon}{2|x_{0}|}\} [/mm]

Ist das die Standardversion, gibt es auch hier eine Art, sein Ergebnis zu überprüfen und ich verstehe die Aussage der Lösungsmenge nicht.



Vielen Dank im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Stetigkeit Prinzip: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Sa 10.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]