Stetigkeit Umgebung,Definition < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Unser Tutor sagte: Eine Funktion ist stetig in [mm] x_0 [/mm] <=> Für jede Umgebung von [mm] f(x_0) [/mm] eine Umgebung von [mm] x_0 [/mm] gibt, die durch f in die gegebene Umgebung von [mm] f(x_0) [/mm] abgebildet wird. |
Hallo
Nun hab ich im Internet nachgeschaut, wo die Stetigkeit mit Umgebungen defeniert ist:
f an [mm] x_0 [/mm] stetig <=>
Sei [mm] x_0 \in [/mm] D [mm] \subseteq \IR [/mm] und [mm] f:D->\IR [/mm]
[mm] ]x_0 [/mm] - [mm] \delta [/mm] , [mm] x_0 [/mm] + [mm] \delta[ [/mm] = [mm] U_\delta (x_0) [/mm] und [mm] ]f(x_0) [/mm] - [mm] \epsilon [/mm] , [mm] f(x_0) [/mm] + [mm] \epsilon[=U_\epsilon (f(x_0))
[/mm]
[mm] \epsilon, \exits \delta [/mm] > 0 : [mm] f(U_\delta(x_0) \cap [/mm] D) [mm] \subseteq U_\epsilon (f(x_0))
[/mm]
Ist das nicht genau das Umgekehrte , als ddas was der Tutor sagte?
Ich bin verwirrt ..^^
lg
|
|
|
|
> Unser Tutor sagte: Eine Funktion ist stetig in [mm]x_0[/mm] <=> Für
> jede Umgebung von [mm]f(x_0)[/mm] eine Umgebung von [mm]x_0[/mm] gibt, die
> durch f in die gegebene Umgebung von [mm]f(x_0)[/mm] abgebildet
> wird.
> Hallo
> Nun hab ich im Internet nachgeschaut, wo die Stetigkeit
> mit Umgebungen defeniert ist:
> f an [mm]x_0[/mm] stetig <=>
> Sei [mm]x_0 \in[/mm] D [mm]\subseteq \IR[/mm] und [mm]f:D->\IR[/mm]
> [mm]]x_0[/mm] - [mm]\delta[/mm] , [mm]x_0[/mm] + [mm]\delta[[/mm] = [mm]U_\delta (x_0)[/mm] und [mm]]f(x_0)[/mm]
> - [mm]\epsilon[/mm] , [mm]f(x_0)[/mm] + [mm]\epsilon[=U_\epsilon (f(x_0))[/mm]
>
> [mm]\epsilon, \exits \delta[/mm] > 0 : [mm]f(U_\delta(x_0) \cap[/mm] D)
> [mm]\subseteq U_\epsilon (f(x_0))[/mm]
Hallo,
so stand es bestimmt nicht im schlauen Buch.
Sondern eher so:
Für alle [mm] \varepsilon [/mm] >0 existiert ein passendes [mm] \delta>0, [/mm] so daß [mm] $f(U_\delta(x_0) \cap$ [/mm] D) [mm] $\subseteq U_\epsilon (f(x_0))$
[/mm]
>
> Ist das nicht genau das Umgekehrte , als ddas was der Tutor
> sagte?
Nein, das ist das, was der Tutor sagt.
Du nimmst Dir eine beliebig kleine ("epsilon-") Umgebung von [mm] f(x_0).
[/mm]
Sofern die Funktion stetig ist, ist Dir garantiert, daß Du eine dazu passende ("delta-") Umgebung von [mm] x_0 [/mm] findest, welche vermöge f in die ausgewählte Umgebung von [mm] f(x_0) [/mm] abgebildet wird.
Es wird die Umgebung von [mm] x_0 [/mm] in die Umgebung von [mm] f(x_0) [/mm] abgebildet.
LG Angela
> Ich bin verwirrt ..^^
>
> lg
|
|
|
|