matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 Mo 01.01.2007
Autor: vicky

Aufgabe
Man zeige die Stetigkeit folgender Funktion auf [mm] \IR: [/mm]

f(x) = [x] + [mm] \wurzel[n]{x-[x]} [/mm] ,n [mm] \ge [/mm] 2.

Hallo und ein frohes neues Jahr,

komme bei dieser Aufgabe irgendwie nicht so recht weiter und habe schon vieles probiert doch nichts hat mich voran gebracht.

Die Definition für Stetigkeit lautet folgendermaßen:
[mm] \forall\epsilon>0\exists\delta>0 \forall [/mm] z [mm] \in [/mm] D: [mm] |z-z_{0}|<\delta\Rightarrow |f(z)
In erster Linie verwirren mich die Gaußklammern ein wenig und dann die Wurzel. Haben zwei sehr einfache Übungsaufgaben diesbezüglich schon gerechnet doch so recht weiterbringen tun diese mich nicht.
Hier mein Ansatz:
Ich gebe mir ein [mm] \epsilon>0 [/mm] vor und ein [mm] x_{0} \in \IR [/mm]
[mm] |([x]+\wurzel[n]{x-[x]}) [/mm] - [mm] ([x_{0}]+\wurzel[n]{x_{0}-[x_{0}]}| [/mm] < [mm] \epsilon [/mm]
wenn [mm] x_{0} [/mm] = 0 ist fällt der hintere Term weg (alles nach dem minus-Zeichen). ich betrachte dann |[x] + [mm] \wurzel[n]{x-[x]}| \le |[x]|+|\wurzel[n]{x-[x]}|\le|[x]| [/mm] + [mm] \wurzel[n]{|x-[x]|} [/mm] < epsilon
Dann kann ich auch noch den Fall [mm] x_{0}\not=0 [/mm] betrachten.
Irgendwann muß ich dann einen Wert für [mm] \delta [/mm] erhalten der von [mm] \epsilon [/mm] abhängt mit dem dann die Implikation [mm] |x-x_{0}|<\delta\Rightarrow|([x]+\wurzel[n]{x-[x]}) [/mm] - [mm] ([x_{0}]+\wurzel[n]{x_{0}-[x_{0}]})|<\epsilon [/mm] gilt.  
Bin für jede Hilfe dankbar.
Gruß
vicky


        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Mo 01.01.2007
Autor: moudi

Hallo vicky

Hier würde ich nicht mit der [mm] $\epsilon\,\delta$-Definition [/mm] der Stetigkeit arbeiten, sondern mit den einschlägigen Sätzen.

i) [mm] $x^{(1/n)}$ [/mm] ist stetig für [mm] $x\geq [/mm] 0$ und n positiv
ii) [x] ist stetig für [mm] $x\in\IR\setminus\IZ$ [/mm]

Deshalb musst du nur zeigen, dass f(x) stetig ist für [mm] $x\in\IZ$, [/mm] weil Addition und Verknüpfung von stetigen Funktionen stetige Funktionen erzeugt.

Um zu zeigen, dass f(x) stetig ist für [mm] $x_0\in\IZ$ [/mm] würde ich zeigen, dass der linksseitige und der rechtseitige Grenzwert gleich sind d.h.
[mm] $\lim_{x\to x_0^-}f(x)=\lim_{x\to x_0^+}f(x)$ [/mm] für [mm] $x_0\in\IZ$. [/mm]

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]