matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: z.z. f in a € R nicht stetig
Status: (Frage) beantwortet Status 
Datum: 20:53 Di 26.05.2009
Autor: Kendalor

Aufgabe
Sei [mm] f(x)=\begin{cases} 0, & \mbox{für } x \mbox{ rational} \\ 1, & \mbox{für } n \mbox{ irrational} \end{cases} [/mm]

Zeige sie, dass für alle a [mm] \in \IR [/mm] , f nicht stetig in a ist.    

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Nach eingehender Lektüre des Forums hab ich mich zu folgender "Lösung" entschieden:

Sei [mm] x_{n} [/mm] eine Folge , wobei alle Glieder der Folge Irrational sind und der Grenzwert a rational  (z.B. [mm] x_{n}= \bruch{\wurzel{2}}{n} [/mm] mit [mm] \limes_{n\rightarrow\infty} x_{n}= [/mm] 0

dann sollte:

[mm] \limes_{n\rightarrow\infty} f(x_{n}) [/mm] = f(a)  sein.

[mm] \limes_{n\rightarrow\infty} f(x_{n}) [/mm] = f(a)
                                                    1    =    0

[mm] \Rightarrow [/mm] die Funktio f(x) ist nicht stetig in a


bin mir bei der Lösung nicht sicher und bekomm auch immer sehr viel Punkt abzug wegen schreibweise und Argumentation. Deswegen die Frage:

Ist dies so Richtig ? Kann ich das so beweisen ? Oder hab ich es anscheinend immernoch nicht verstanden ?

mfg

Patrick Rehn

        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Di 26.05.2009
Autor: leduart

Hallo
Du kannst die Unstetigkeit an rationalen Stellen ungefaehr so zeigen. Gezeigt hast du allerdings nur die unstetigkeit in 0 , so wie du es aufgeschrieben hast. du muss an jeder beliebigen rationalen stelle und an jeder irrationalen Stelle zeigen, dass die fkt unstetig ist. ich find dabei das [mm] \epsilon [/mm] /delta
kriterium einfacher.
Wie beweist du dass deine folge garantiert imer irrational ist und der GW garantiert rational?
Gruss leduart

Bezug
                
Bezug
Stetigkeit einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:43 So 31.05.2009
Autor: Kendalor

vielen dank,   für die Hilfe, da ich das mit dem delta/epsilon verfahren nicht kann hab ich es noch mit einer fallentscheidung lösen können für Lim x gegen am wobei a jeweils rational und irrational war und dementsprechend nochnal für x.



mfg

kendalor

Bezug
        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mi 27.05.2009
Autor: fred97

Sei a [mm] \in \IR. [/mm]

Dann gibt es eine Folge [mm] (a_n) [/mm] in [mm] \IQ [/mm] mit [mm] a_n \to [/mm] a und es gibt eine Folge [mm] (b_n) [/mm] in [mm] \IR [/mm]  \  [mm] \IQ [/mm] mit [mm] b_n \to [/mm] a .

Aber

                    [mm] $f(a_n) [/mm] = 0 $   und [mm] $f(b_n) [/mm] = 1$ für jedes n [mm] \in \IN [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]