matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenStetigkeit gebrochenrational
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Stetigkeit gebrochenrational
Stetigkeit gebrochenrational < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit gebrochenrational: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 So 27.11.2011
Autor: photonendusche

Aufgabe
Für welche a ist  die Funktion:
f(x) [mm] =\bruch{ x^{2}-x-2}{x-a} [/mm] stetig fortsetzbar?

Mein erster Gedanke war es durch Polynomdivision zu erledigen, aber da kommt nichts vernünftiges heraus.
Wie kann ich das Problem angehen?

        
Bezug
Stetigkeit gebrochenrational: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 So 27.11.2011
Autor: abakus


> Für welche a ist  die Funktion:
>  f(x) [mm]=\bruch{ x^{2}-x-2}{x-a}[/mm] stetig fortsetzbar?
>  Mein erster Gedanke war es durch Polynomdivision zu
> erledigen, aber da kommt nichts vernünftiges heraus.
>  Wie kann ich das Problem angehen?

Hallo,
die Zählerfunktion hat die Nullstellen -1 und 2,
somit gilt [mm]x^2-x-2[/mm] = (x+1)(x-2).
Wann ist das mit (x-a) kürzbar?
Gruß Abakus


Bezug
                
Bezug
Stetigkeit gebrochenrational: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 So 27.11.2011
Autor: photonendusche

ok danke, hätte ich auch selbst drauf kommen können

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]