matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitStetigkeit /kompakte Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Stetigkeit /kompakte Menge
Stetigkeit /kompakte Menge < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit /kompakte Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Sa 20.05.2006
Autor: pusteblume86

Hallo ihr...Ich hoffe ihr könnt mir weiterhelfen.

Ich habe die Aufgabe, zu zeigen, dass in kompakten Räumen aus der Stetigkeit, die gleichmäßige Stetigkeit folgt.

Ich habe irgendwie null Plan wie ich es machen soll.

Ich kenne die Definitionen von Stetigkeit und auch von gleichmäßiger Stetigkeit in metrischen Räumen..Aber mir fehlt irgendwie der Ansatz,wie jetzt aufgrund der Kompaktkeit aus Stetigkeit , gleichmäßige Stetigkeit folgt.

Kann mir jemand helfen?Ich würde gerne einen Aufgabenansatz posten....Aber: mein einziger Ansatz bisher war es, die Bedingungen auszuschreiben(also die Definitionen von Stetgkeit und glm.Stetigkeit.

Vielen Dank im Voraus!

Lg Sandra

        
Bezug
Stetigkeit /kompakte Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 20.05.2006
Autor: felixf

Hallo Sandra!

> Hallo ihr...Ich hoffe ihr könnt mir weiterhelfen.
>
> Ich habe die Aufgabe, zu zeigen, dass in kompakten Räumen
> aus der Stetigkeit, die gleichmäßige Stetigkeit folgt.
>
> Ich habe irgendwie null Plan wie ich es machen soll.
>  
> Ich kenne die Definitionen von Stetigkeit und auch von
> gleichmäßiger Stetigkeit in metrischen Räumen..Aber mir
> fehlt irgendwie der Ansatz,wie jetzt aufgrund der
> Kompaktkeit aus Stetigkeit , gleichmäßige Stetigkeit folgt.
>
> Kann mir jemand helfen?Ich würde gerne einen Aufgabenansatz
> posten....Aber: mein einziger Ansatz bisher war es, die
> Bedingungen auszuschreiben(also die Definitionen von
> Stetgkeit und glm.Stetigkeit.

Sei also $f : X [mm] \to [/mm] Y$ stetig und [mm] $\varepsilon [/mm] > 0$ gegeben. (Ein Standard-Stetigkeits-Beweisanfang ;-) )

Da $f$ stetig ist gibt es zu jedem $x [mm] \in [/mm] X$ ein [mm] $\delta(x) [/mm] > 0$ so, dass aus $d(x, y) < [mm] \delta$ [/mm] folgt $d(f(x), f(y)) < [mm] \varepsilon/2$. [/mm]

Nun ist $X = [mm] \bigcup_{x \in X} B_{\delta(x)/2}(x)$ [/mm] eine offene Ueberdeckung von $X$. Also gibt es endlich viele [mm] $x_1, \dots, x_n \in [/mm] X$ mit $X = [mm] \bigcup_{i=1}^n B_{\delta(x_i)/2}(x_i)$. [/mm]

Setze [mm] $\delta [/mm] := [mm] \frac{1}{2} \min\{ \delta(x_1), \dots, \delta(x_n) \} [/mm] > 0$.

Sind nun $x, y [mm] \in [/mm] X$ mit $d(x, y) < [mm] \delta$, [/mm] so gibt es ein $i [mm] \in \{ 1, \dots, n \}$ [/mm] mit $d(x, [mm] x_i), [/mm] d(y, [mm] y_i) [/mm] < [mm] \delta(x_i)$ [/mm] (warum?). Und weiterhin gilt $d(f(x), f(y)) [mm] \le \varepsilon/2 [/mm] + [mm] \varepsilon/2 [/mm] = [mm] \varepsilon$ [/mm] (warum?).

So, die Luecken musst du noch selber ausfuellen :-)

LG Felix


Bezug
                
Bezug
Stetigkeit /kompakte Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 So 21.05.2006
Autor: pusteblume86

qoute:  Sind nun $ d(x, y) < [mm] \delta [/mm] $ mit , so gibt es ein
$ i [mm] \in \{ 1, \dots, n \} [/mm] $ mit $ d(x, [mm] x_i), [/mm] d(y, [mm] y_i) [/mm] < [mm] \delta(x_i) [/mm] $(warum?). Und weiterhin gilt $ d(f(x), f(y)) [mm] \le \varepsilon/2 [/mm] + [mm] \varepsilon/2 [/mm] = [mm] \varepsilon [/mm] $  (warum?).

So, die Luecken musst du noch selber ausfuellen  

LG Felix "

Erstma vielen Dank für deine Hilfe. Soweit verstanden.

also das erste "warum?" ist klar. Die xi's liegen in X, das x auch. Da  [mm] \delta [/mm] := [mm] \frac{1}{2} \min\{ \delta(x_1), \dots, \delta(x_n) \} [/mm] > 0 $ muss also d(x,xi)< [mm] delta(x_i) [/mm] sein.

Beim 2. bin ich mir nicht ganz sicher...Also es ist natürlich auf jeden Fall wegen der Dreieicksungleichung. Nur ich weiß nicht genau, welchen Term ich einfügen muss...Da hab ich grad noch so mein Problem.

Eine Frage noch zum Anfang..Warum sagst du bei der Definition für die Stetigkeit, dass delta(x) >0 existieren muss und nicht einfach nur delta?Ich kenne es nur mit delta.Oder willst du darauf aufmerksammachen, von was es noch abhängt?

Lg Sandra

Bezug
                        
Bezug
Stetigkeit /kompakte Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 So 21.05.2006
Autor: felixf

Hallo Sandra!

> qoute:  Sind nun [mm]d(x, y) < \delta[/mm] mit , so gibt es ein
>  [mm]i \in \{ 1, \dots, n \}[/mm] mit [mm]d(x, x_i), d(y, y_i) < \delta(x_i) [/mm](warum?).
> Und weiterhin gilt [mm]d(f(x), f(y)) \le \varepsilon/2 + \varepsilon/2 = \varepsilon[/mm]
>  (warum?).
>
> So, die Luecken musst du noch selber ausfuellen  
>
> LG Felix "
>  
> Erstma vielen Dank für deine Hilfe. Soweit verstanden.
>  
> also das erste "warum?" ist klar. Die xi's liegen in X, das
> x auch. Da  [mm]\delta[/mm] := [mm]\frac{1}{2} \min\{ \delta(x_1), \dots, \delta(x_n) \}[/mm]
> > 0 $ muss also d(x,xi)< [mm]delta(x_i)[/mm] sein.

Vorsicht, du musst erst noch zeigen dass es ein [mm] $x_i$ [/mm] gibt was sowohl fuer $x$ als auch fuer $y$ die Bedingung erfuellt!

> Beim 2. bin ich mir nicht ganz sicher...Also es ist
> natürlich auf jeden Fall wegen der Dreieicksungleichung.

Genau.

> Nur ich weiß nicht genau, welchen Term ich einfügen
> muss...Da hab ich grad noch so mein Problem.

Du musst das so aufspalten dass du zwei Ausdruecke da stehen hast, die [mm] $\le \frac{\varepsilon}{2}$ [/mm] sind. Da gibts nicht viel zur Auswahl :)

> Eine Frage noch zum Anfang..Warum sagst du bei der
> Definition für die Stetigkeit, dass delta(x) >0 existieren
> muss und nicht einfach nur delta?Ich kenne es nur mit
> delta.Oder willst du darauf aufmerksammachen, von was es
> noch abhängt?

Genau, ich wollte drauf aufmerksam machen wovon es abhaengt. Und es dann gleich weiterbenutzen koennen, wenn ich ein beliebiges $x$ aus $X$ nehme, um nicht extra schreiben zu muessen ``sei [mm] $\delta [/mm] > 0$ passend wie oben zu $x$'', sondern halt einfach [mm] $\delta(x)$ [/mm] :-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]