Stetigkeit mittels Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:10 Di 21.05.2013 | Autor: | Herbart |
Ich möchte Stetigkeit mittels Folgen im [mm] \IR^2 [/mm] zeigen. Wenn ich eine Funktion f: [mm] \IR^2 \to \IR^2 [/mm] habe und zeigen will, dass diese stetig fortsetzbar in (0,0) ist und dort durch den Wert (1,0) z.B. ergänzt werden kann, kann ich mir dann eine beliebige Folge [mm] (x_k,y_k)_{k\in \IN} \in \IR^2 [/mm] nehmen, für die gilt [mm] (x_k,y_k) \to [/mm] 0 und mit dieser zeigen, dass [mm] |f(x_k,y_k)-(1,0)|\to [/mm] 0 geht, weil [mm] x_k \to [/mm] 0 geht und [mm] y_k \to [/mm] 0 geht?
Ist das ein zulässiger Beweis um mit Folgen im [mm] \IR^2 [/mm] stetige Fortsetzbarkeit zu zeigen?
|
|
|
|
Hallo Herbart,
> Ich möchte Stetigkeit mittels Folgen im [mm]\IR^2[/mm] zeigen. Wenn
> ich eine Funktion f: [mm]\IR^2 \to \IR^2[/mm] habe und zeigen will,
> dass diese stetig fortsetzbar in (0,0) ist und dort durch
> den Wert (1,0) z.B. ergänzt werden kann, kann ich mir dann
> eine beliebige Folge [mm](x_k,y_k)_{k\in \IN} \in \IR^2[/mm] nehmen,
> für die gilt [mm](x_k,y_k) \to[/mm] 0 und mit dieser zeigen, dass
> [mm]|f(x_k,y_k)-(1,0)|\to[/mm] 0 geht, weil [mm]x_k \to[/mm] 0 geht und [mm]y_k \to[/mm]
> 0 geht?
> Ist das ein zulässiger Beweis um mit Folgen im [mm]\IR^2[/mm]
> stetige Fortsetzbarkeit zu zeigen?
Es genügt nicht, das mit einer beliebigen Folge zu tun. Dein Grenzwert muss für jede beliebige Folge gleich sein, damit die Funktion stetig ergänzbar ist. Nimm [mm] f(x,y)=\bruch{x}{x+y}. [/mm] Wenn Du Dich auf der x-Achse näherst (also x=0, [mm] $y\to0$), [/mm] ist der Grenzwert 0. Mit y=0, [mm] x\to0 [/mm] ist der Grenzwert 1. Mit x=y ist der Grenzwert [mm] \bruch{1}{2}.
[/mm]
Grüße
reverend
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:41 Di 21.05.2013 | Autor: | Herbart |
Schade. Ich betrachte momentan eine Funktion, für die ich [mm] |f(x_k,y_k)-(1,0)| [/mm] bis hin zu [mm] \wurzel{2-\bruch{2}{\wurzel{1+x_k^2}}} [/mm] nach oben abgeschätzt habe.
Deshalb überlege ich momentan, ob ich hier nicht argumentieren kann, dass [mm] x_k\to [/mm] 0 geht und daher auch [mm] \wurzel{2-\bruch{2}{\wurzel{1+x_k^2}}}\to [/mm] 0 . Kann ich das so machen?
Andererseits ist mir gerade eingefallen, dass ich auch für [mm] (x_1,x_2)\in\IR^2 |f(x_k,y_k)-(1,0)| [/mm] durch [mm] \wurzel{2-\bruch{2}{\wurzel{1+x_1^2}}} [/mm] nach oben abschätzen kann. Kann ich hierbei argumentieren, dass [mm] \wurzel{2-\bruch{2}{\wurzel{1+x_1^2}}} [/mm] < [mm] \varepsilon [/mm] mit [mm] \varepsilon [/mm] > 0, falls [mm] x_1 [/mm] genügend nahe an der 0 ist?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:45 Di 21.05.2013 | Autor: | Herbart |
> Deshalb überlege ich momentan, ob ich hier nicht
> argumentieren kann, dass [mm]x_k\to[/mm] 0 geht und daher auch
> [mm]\wurzel{2-\bruch{2}{\wurzel{1+x_k^2}}}\to[/mm] 0 . Kann ich das
> so machen?
> Andererseits ist mir gerade eingefallen, dass ich auch für
> [mm](x_1,x_2)\in\IR^2 |f(x_k,y_k)-(1,0)|[/mm] durch
> [mm]\wurzel{2-\bruch{2}{\wurzel{1+x_1^2}}}[/mm] nach oben
> abschätzen kann. Kann ich hierbei argumentieren, dass
> [mm]\wurzel{2-\bruch{2}{\wurzel{1+x_1^2}}}[/mm] < [mm]\varepsilon[/mm] mit
> [mm]\varepsilon[/mm] > 0, falls [mm]x_1[/mm] genügend nahe an der 0 ist.
Die Fragen stehen oben.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:25 Di 21.05.2013 | Autor: | Marcel |
Hallo,
> > Andererseits ist mir gerade eingefallen, dass ich auch für
> > [mm](x_1,x_2)\in\IR^2 |f(x_k,y_k)-(1,0)|[/mm] durch
> > [mm]\wurzel{2-\bruch{2}{\wurzel{1+x_1^2}}}[/mm] nach oben
> > abschätzen kann. Kann ich hierbei argumentieren, dass
> > [mm]\wurzel{2-\bruch{2}{\wurzel{1+x_1^2}}}[/mm] < [mm]\varepsilon[/mm] mit
> > [mm]\varepsilon[/mm] > 0, falls [mm]x_1[/mm] genügend nahe an der 0 ist.
das letzte geht auch! (Ist allerdings sehr "schwammig"!)
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:53 Di 21.05.2013 | Autor: | fred97 |
> Schade. Ich betrachte momentan eine Funktion, für die ich
> [mm]|f(x_k,y_k)-(1,0)|[/mm] bis hin zu
> [mm]\wurzel{2-\bruch{2}{\wurzel{1+x_k^2}}}[/mm] nach oben
> abgeschätzt habe.
> Deshalb überlege ich momentan, ob ich hier nicht
> argumentieren kann, dass [mm]x_k\to[/mm] 0 geht und daher auch
> [mm]\wurzel{2-\bruch{2}{\wurzel{1+x_k^2}}}\to[/mm] 0 . Kann ich das
> so machen?
ich hoffe, dass ich Dich richtig verstanden habe. Du hast also für jede Folge [mm] ((x_k,y_k)) [/mm] für die gilt [mm] (x_k,y_k) \to [/mm] (0,0), die Abschätzung
[mm] |f(x_k,y_k)-(1,0)| \le \wurzel{2-\bruch{2}{\wurzel{1+x_k^2}}}
[/mm]
Die rechte Seite in obiger Ungl. geht für k [mm] \to \infty [/mm] gegen 0.
Damit ist gezeigt: [mm] f(x_k,y_k) \to [/mm] (1,0) für k [mm] \to \infty.
[/mm]
> Andererseits ist mir gerade eingefallen, dass ich auch für
> [mm](x_1,x_2)\in\IR^2 |f(x_k,y_k)-(1,0)|[/mm] durch
> [mm]\wurzel{2-\bruch{2}{\wurzel{1+x_1^2}}}[/mm] nach oben
> abschätzen kann. Kann ich hierbei argumentieren, dass
> [mm]\wurzel{2-\bruch{2}{\wurzel{1+x_1^2}}}[/mm] < [mm]\varepsilon[/mm] mit
> [mm]\varepsilon[/mm] > 0, falls [mm]x_1[/mm] genügend nahe an der 0 ist?
nein.
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:45 Di 21.05.2013 | Autor: | Herbart |
> ich hoffe, dass ich Dich richtig verstanden habe. Du hast
> also für jede Folge [mm]((x_k,y_k))[/mm] für die gilt [mm](x_k,y_k) \to[/mm]
> (0,0), die Abschätzung
>
>
>
> [mm]|f(x_k,y_k)-(1,0)| \le \wurzel{2-\bruch{2}{\wurzel{1+x_k^2}}}[/mm]
>
>
> Die rechte Seite in obiger Ungl. geht für k [mm]\to \infty[/mm]
> gegen 0.
>
> Damit ist gezeigt: [mm]f(x_k,y_k) \to[/mm] (1,0) für k [mm]\to \infty.[/mm]
>
Genau so meine ich das :) . Heißt das also diese Möglichkeit wäre als Beweis zulässig?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:59 Di 21.05.2013 | Autor: | fred97 |
> > ich hoffe, dass ich Dich richtig verstanden habe. Du hast
> > also für jede Folge [mm]((x_k,y_k))[/mm] für die gilt [mm](x_k,y_k) \to[/mm]
> > (0,0), die Abschätzung
> >
> >
> >
> > [mm]|f(x_k,y_k)-(1,0)| \le \wurzel{2-\bruch{2}{\wurzel{1+x_k^2}}}[/mm]
>
> >
> >
> > Die rechte Seite in obiger Ungl. geht für k [mm]\to \infty[/mm]
> > gegen 0.
> >
> > Damit ist gezeigt: [mm]f(x_k,y_k) \to[/mm] (1,0) für k [mm]\to \infty.[/mm]
>
> >
>
> Genau so meine ich das :) . Heißt das also diese
> Möglichkeit wäre als Beweis zulässig?
Ja
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:50 Di 21.05.2013 | Autor: | Herbart |
Ich danke dir für deine Hilfe!
|
|
|
|