matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenStetigkeit partieller Ableitun
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit partieller Ableitun
Stetigkeit partieller Ableitun < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit partieller Ableitun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Do 13.10.2011
Autor: kozlak

Aufgabe
gegeben ist die Funktion [mm] f:R^2->R [/mm] mit

[mm] f(x,y)=\pmat{ \bruch{x^2*sinx}{x^2+y^2} -> (x,y,)\not=(0,0)\\ 0 -> (x,y)=(0,0)}. [/mm]
Berechne die partielle Ableitung [mm] \bruch{\partial f}{\partial x}(x,y) [/mm] für alle (x,y) [mm] \in R^2. [/mm] Ist die Ableitung [mm] \bruch{\partial f}{\partial x} [/mm] in (0,0) stetig?

Hallo!

Das Ergebnis ist bei dieser Aufgabe wider einmal vorgegeben worden, nur ich komm nicht darauf. DIe partielle Ableitung nach x ist in (0,0) nicht stetig.

Habe zuerst [mm] \bruch{\partial f}{\partial x}(x,y) [/mm] berechnet:

[mm] \bruch{\partial f}{\partial x}(x,y)=\bruch{(2xsinx+x^2cosx)(x^2+y^2)-xsinx*2x}{(x^2+y^2)^2}. [/mm]
Partielle Ableitung nach x  in (0,0) ist:
[mm] \limes_{h\rightarrow 0} \bruch{sinh}{h}=1. [/mm]

Untersuchung auf Stetigkeit der partiellen ABleitung nach x in (0,0):

Seien [mm] (x_n,y_n) [/mm] eine beliebige gegen (0,0) konvergierende Folge mit [mm] x_n \not= [/mm] 0 und [mm] y_n=0, [/mm] dann ist:


[mm] \bruch{\partial f}{\partial x}(0,0)=\limes_{x_n\rightarrow\infty}(x_n,0) \bruch{(x_n)^4cosx_n}{(x_n)^4} [/mm]
[mm] \limes_{x_n\rightarrow\infty}(x_n,0) |\bruch{(x_n)^4cosx_n}{(x_n)^4}|\le \bruch{(x_n)^4}{(x_n)^4}=1. [/mm]

Somit wäre es doch in (0,0) stetig?


mfg,
kozlak


        
Bezug
Stetigkeit partieller Ableitun: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Do 13.10.2011
Autor: fred97


> gegeben ist die Funktion [mm]f:R^2->R[/mm] mit
>  
> [mm]f(x,y)=\pmat{ \bruch{x^2*sinx}{x^2+y^2} -> (x,y,)\not=(0,0)\\ 0 -> (x,y)=(0,0)}.[/mm]
>  
> Berechne die partielle Ableitung [mm]\bruch{\partial f}{\partial x}(x,y)[/mm]
> für alle (x,y) [mm]\in R^2.[/mm] Ist die Ableitung [mm]\bruch{\partial f}{\partial x}[/mm]
> in (0,0) stetig?
>  Hallo!
>  
> Das Ergebnis ist bei dieser Aufgabe wider einmal vorgegeben
> worden, nur ich komm nicht darauf. DIe partielle Ableitung
> nach x ist in (0,0) nicht stetig.
>  
> Habe zuerst [mm]\bruch{\partial f}{\partial x}(x,y)[/mm] berechnet:
>  
> [mm]\bruch{\partial f}{\partial x}(x,y)=\bruch{(2xsinx+x^2cosx)(x^2+y^2)-xsinx*2x}{(x^2+y^2)^2}.[/mm]

Das stimmt. Wenn Du magst, kannst Du das noch vereinfachen.


>  
> Partielle Ableitung nach x  in (0,0) ist:
>  [mm]\limes_{h\rightarrow 0} \bruch{sinh}{h}=1.[/mm]

Auch das stimmt.

>  
> Untersuchung auf Stetigkeit der partiellen ABleitung nach x
> in (0,0):
>  
> Seien [mm](x_n,y_n)[/mm] eine beliebige gegen (0,0) konvergierende
> Folge mit [mm]x_n \not=[/mm] 0 und [mm]y_n=0,[/mm] dann ist:
>  
>
> [mm]\bruch{\partial f}{\partial x}(0,0)=\limes_{x_n\rightarrow\infty}(x_n,0) \bruch{(x_n)^4cosx_n}{(x_n)^4}[/mm]
>  
> [mm]\limes_{x_n\rightarrow\infty}(x_n,0) |\bruch{(x_n)^4cosx_n}{(x_n)^4}|\le \bruch{(x_n)^4}{(x_n)^4}=1.[/mm]


Hier gehts aber drunter und drüber ! was soll [mm] (x_n,0) [/mm] da oben ???

Tipp: betrachte [mm] \bruch{\partial f}{\partial x}(0,y) [/mm]

FRED

>  
> Somit wäre es doch in (0,0) stetig?
>  
>
> mfg,
>  kozlak
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]