matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraStetigkeit von Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Stetigkeit von Funktionen
Stetigkeit von Funktionen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Fr 16.01.2004
Autor: Denise

Hallo Mathegenies
Ich habe eine Verständnisfrage zur Stetigkeit von Funktionen. Die Definition, wann eine Funktion stetig ist, ist mir bekannt, aber dennoch kann ich nicht viel mit ihr anfangen. Ich weiss nicht, wie man sie praktisch anwenden kann. Vielleicht könnt ihn mir ja dabei helfen, denn die sture Definition bringt mir nicht viel...
Liebe Grüße
Denise

        
Bezug
Stetigkeit von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Do 22.01.2004
Autor: Stefan

Hallo Denise,

ich antworte dir jetzt mal, auch wenn ich kein Mathegenie bin.

Tut mir leid, dass wir jetzt erst antworten. Ich habe dein Beitrag aber jetzt erst gesehen.

Anschaulich bedeutet die Stetigkeit in einem Punkt folgendes: Ich lege ein beliebiges Intervall [mm]J[/mm] um den Funktionswert dieses Punktes fest, egal wie klein auch immer. Dann finde ich in jedem Fall ein Intervall [mm]I[/mm] um den gewählten Punkt, so dass alle Funktionswerte von Punkten aus [mm]I[/mm] in [mm]J[/mm] liegen.

Also: Wenn ich nur nah genug an den Punkt rangehe, in dem die Funktion stetig ist, dann komme ich auch mit den jeweiligen Funktionswerten beliebig nahe an den Funktionswert dieses Punktes.

Anschaulich bedeutet das, dass der Graph einer stetigen Funktion keine Sprünge besitzt. Man kann den Graph in einem durchzeichnen, ohne den Stift abzusetzen. (Diese "Definition" ist mathematisch unkorrekt und mit Vorsicht zu genießen, sie gibt einem aber eine gute Intuition.)

Beispiel: Die Funktion

[mm]f(x) =\left\{ \begin{array}{cccc} 1 & , & \mbox{für} & x \le 0,\\[5pt] 2 & , & \mbox{für} & x>0 \end{array} \right.[/mm]

ist in [mm]x_0=0[/mm] nicht stetig. Denn: Egal, wie nah ich an die [mm]x_0=0[/mm] rangehe, die Funktionswerte an der Stelle [mm]x_0=0[/mm] ([mm]f(0)=1[/mm]) und rechts von [mm]x_0=0[/mm] ([mm]f(x)=2[/mm] für alle [mm]x>0[/mm]) unterscheiden sich immer um 1, liegen also nicht beliebig nahe beieinander. Wenn ich [mm]\varepsilon=1[/mm] wähle, dann gibt es kein [mm]\delta > 0[/mm] mit

[mm]|x-0|<\delta \qquad \Rightarrow \qquad |f(x)-f(0)| < \varepsilon[/mm].

An der Stelle [mm]x=0[/mm] liegt ein Sprung (der Größe 1) vor, die Funktion ist dort nicht stetig.

Ist es jetzt klarer?

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]