matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieStichprobenvarianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Stichprobenvarianz
Stichprobenvarianz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stichprobenvarianz: Fast sichere Konvergenz
Status: (Frage) beantwortet Status 
Datum: 09:26 Mi 07.11.2012
Autor: icarus89

Aufgabe
Seien [mm] (X_{n})_{n} [/mm] unabhängige, identisch verteilte ZV mit Erwartungswert [mm] \mu [/mm] und Varianz [mm] \sigma^{2}. [/mm] Sei [mm] \overline{X}_{n} [/mm] das arithmetische Mittel der ersten n und [mm] S^{2}_{n}:= \frac{1}{n-1} \sum_{k=1}^{n} (X_{k}-\overline{X}_{n})^{2}. [/mm] Untersuchen Sie [mm] S^{2}_{n} [/mm] auf P-fast sichere Konvergenz und bestimmen Sie gegebenfalls den Grenzwert.

Hallo!

Das Ding soll wohl auch fast sicher konvergieren, wohl gegen [mm] \sigma^{2}, [/mm] was ja der Erwartungswert ist, wie wir schon berechnet haben. Um die Konvergenz zu zeigen, soll man wohl wie das beim arithmetischen Mittel auch geht das Starke Gesetz der Großen Zahlen anwenden, doch sehe ich nicht, wie man das hierauf anwenden könnte.
Man kann das ganze Ding ja mal nen bisschen anders hinschreiben:
[mm] S^{2}_{n}= \frac{1}{n-1} \sum_{k} X_{k}^{2} [/mm] - [mm] \overline{X}_{n}^{2} [/mm]
oder
= [mm] \frac{1}{n-1} \sum_{k=1}^{n} (X_{k}-\mu)^{2} [/mm] + 2 ( [mm] X_{k}- \mu [/mm] ) ( [mm] \overline{X}_{n} [/mm] - [mm] \mu [/mm] ) + ( [mm] \mu [/mm] - [mm] \overline{X}_{n})^{2} [/mm]

Wie die erste Darstellung helfen kann, sehe ich nicht. Bei der zweiten sollten "vorne" und "hinten" fast sicher gegen 0 konvergieren.
Was übrig bleibt ist
- [mm] \frac{1}{n-1} \sum_{k=1}^{n} \frac{2}{n} [/mm] ( [mm] X_{k} [/mm] - [mm] \mu [/mm] ) ( [mm] \sum_{l=1}^{n} X_{l}- \mu [/mm] )
Warum das aber fast sicher gegen [mm] \sigma^{2} [/mm] konvergieren sollte, sehe ich nicht, find ich nichtmal plausibel, also muss schon oben irgendwas falsch sein...

        
Bezug
Stichprobenvarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Mi 07.11.2012
Autor: kamaleonti

Hi,
> Seien [mm](X_{n})_{n}[/mm] unabhängige, identisch verteilte ZV mit
> Erwartungswert [mm]\mu[/mm] und Varianz [mm]\sigma^{2}.[/mm] Sei
> [mm]\overline{X}_{n}[/mm] das arithmetische Mittel der ersten n und
> [mm]S^{2}_{n}:= \frac{1}{n-1} \sum_{k=1}^{n} (X_{k}-\overline{X}_{n})^{2}.[/mm]
> Untersuchen Sie [mm]S^{2}_{n}[/mm] auf P-fast sichere Konvergenz und
> bestimmen Sie gegebenfalls den Grenzwert.

> Man kann das ganze Ding ja mal nen bisschen anders
> hinschreiben:
>  [mm]S^{2}_{n}= \frac{1}{n-1} \sum_{k} X_{k}^{2}[/mm] -  [mm]\overline{X}_{n}^{2}[/mm]

Das stimmt leider schon nicht.

>  oder
>  = [mm] \frac{1}{n-1} \sum_{k=1}^{n}\red{\left(} (X_{k}-\mu)^{2} \red{-} [/mm] 2 ( [mm] X_{k}- \mu) [/mm] ( [mm] \overline{X}_{n} [/mm] - [mm] \mu) [/mm] + ( [mm] \mu- \overline{X}_{n})^{2}\red{\right)} [/mm]

Verwende Klammern, damit deutlich wird, was summiert wird. Dann war da noch ein Vorzeichenfehler.

>  
> Wie die erste Darstellung helfen kann, sehe ich nicht. Bei
> der zweiten sollten "vorne" und "hinten" fast sicher gegen 0 konvergieren.

Das würde ich nicht unterschreiben. Bedenke nur [mm] E(X_k-\mu)^2 =\sigma^2 [/mm]

> Was übrig bleibt ist
>  - [mm]\frac{1}{n-1} \sum_{k=1}^{n} \frac{2}{n}[/mm] ( [mm]X_{k}[/mm] - [mm]\mu[/mm] )
> ( [mm]\sum_{l=1}^{n} X_{l}- \mu[/mm] )
>  Warum das aber fast sicher gegen [mm]\sigma^{2}[/mm] konvergieren
> sollte, sehe ich nicht, find ich nichtmal plausibel, also
> muss schon oben irgendwas falsch sein...

Machen wir's anders

       [mm] $S^{2}_{n}=\frac{1}{n-1} \left[\left(\sum_{k} X_{k}^{2}\right) -2\overline{X}_n\sum_k X_k+ n\overline{X}_n^2\right]$ [/mm]
      
       [mm] $=\underbrace{\frac{n}{n-1}\frac{1}{n}\sum_k X_k^2}_{\to E(X_1)^2 \text{ f.s.}}-2\underbrace{\overline{X}_n\frac{1}{n-1}\sum_k X_k}_{\to\mu^2 \text{ f.s.}}+\underbrace{\frac{n}{n-1}\overline{X}_n^2}_{\to \mu^2 \text{ f.s.}}\to\sigma^2$ \text{f.s} [/mm]


LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]