matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesStirling Zahlen 2.Art
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Stirling Zahlen 2.Art
Stirling Zahlen 2.Art < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stirling Zahlen 2.Art: Frage
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 11.05.2005
Autor: dauwer

Hallo, ich habe folgende Aufgabe zu den Stirling Zahlen zu bearbeiten:

Zeigen Sie, dass für Stirling Zahlen 2. Art
[mm] {S_{kn} := |Sur(k,n)/\sim|} [/mm]
die folgende Rekursionsformel
[mm] {S_{kn} = S_{k-1,n-1} + n * S_{k-1,n}} [/mm]
für n,k>0 , [mm] {n,k\in\IN} [/mm] gilt.

Es wäre nett, wenn mir jemand helfen könnte.

Danke, Marc

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Stirling Zahlen 2.Art: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Fr 13.05.2005
Autor: banachella

Hallo!

Versuch's mal mit folgendem Ansatz:
Die Zahl $S(k,n)$ gibt ja gerade die Anzahl der $n$-Partionen der Menge [mm] $\{1,\dots,k\}$ [/mm] an. Das heißt, du zerlegst [mm] $\{1,\dots,k\}$ [/mm] in $n$ disjunkte Mengen [mm] $P_i$ [/mm] mit [mm] $\bigcup\limits_{i=1}^nP_i=\{1,\dots,k\}$... [/mm]
Jetzt gibt es zwei Möglichkeiten: Entweder, die Menge [mm] $\{k\}$ [/mm] ist in der Partition enthalten, (d.h. es gibt ein [mm] $i\le [/mm] n$ mit [mm] $P_i=\{k\}$, [/mm] oder nicht.
Im ersten Fall kannst du das Problem dann darauf zurückführen, $n-1$-Partitionen der Menge [mm] $\{1,\dots,k-1\}$ [/mm] zu finden.
Im zweiten Fall kannst du das Problem darauf zurückführen, $n$-Partitionen der Menge [mm] $\{1,\dots,k-1\}$ [/mm] zu finden und das $k$ dann noch irgendwo hinzuzufügen... Dafür gibt's dann jeweils $n$ Möglichkeiten...

Hilft dir das auf die Sprünge?

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]