matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStochastik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Stochastik
Stochastik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik: Bründung von stochast. Größen
Status: (Frage) beantwortet Status 
Datum: 16:33 So 04.11.2007
Autor: Matheanfaenger

Aufgabe
Ein Würfel wird n–mal (oder n Würfel je einmal) geworfen. Begründen Sie, warum die folgenden Abbildungen
X von M = {1, 2, . . . , 6} ^{n} nach [mm] \IR [/mm] stochastische Größen sind:
(a) X = Augenzahl des i–ten Wurfs (oder Würfels)
(b) X = Summe aller n Augenzahlen
(c) X = größte Augenzahl
(d) X = kleinste Augenzahl
(e) X = größte Augenzahl – kleinste Augenzahl
Bestimmen Sie speziell für n = 2 für zumindest drei dieser Größen ihre Verteilung, d.h. W{X = x} für
x [mm] \in M_{x}. [/mm]

Hallo! :)

irgendwie steh ich total an bei dem bsp:

Kann man sagen, dass ein Würfelwurf nicht deterministisch berechenbar ist und deswegen alle Größen bei den Fragen a bis e stochastische Größen sind?
und bei "bestimmen sie speziell für ..." muss ich sagen hab ich keine ahung :(
Wäre für eine gute Erklärung sehr dankbar.

MFG

Martin

        
Bezug
Stochastik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:24 Di 06.11.2007
Autor: Mr.Blonde

ich wuerde die fragen a-e genau sau begruenden, ein wuerfel ist einfach stochastisch definiert und aus :)
bei frage 2 kann ich dir leider nicht weiterhelfen, wuerde mich jetzt aber auch interessieren ;)

Bezug
        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Di 06.11.2007
Autor: koepper

Hallo Martin,

> Ein Würfel wird n–mal (oder n Würfel je einmal) geworfen.
> Begründen Sie, warum die folgenden Abbildungen
>  X von M = {1, 2, . . . , 6} ^{n} nach [mm]\IR[/mm] stochastische
> Größen sind:
>  (a) X = Augenzahl des i–ten Wurfs (oder Würfels)
>  (b) X = Summe aller n Augenzahlen
>  (c) X = größte Augenzahl
>  (d) X = kleinste Augenzahl
>  (e) X = größte Augenzahl – kleinste Augenzahl
>  Bestimmen Sie speziell für n = 2 für zumindest drei dieser
> Größen ihre Verteilung, d.h. W{X = x} für
>  x [mm]\in M_{x}.[/mm]

> Kann man sagen, dass ein Würfelwurf nicht deterministisch
> berechenbar ist und deswegen alle Größen bei den Fragen a
> bis e stochastische Größen sind?

Das Werfen eines Würfels kann man als Zufallsexperiment betrachten, denn man weiß üblicherweise nicht von vornherein, was herauskommen wird. Es ist nicht erforderlich, hier über Determinismus oder Nichtdeterminismus zu philosophieren. Jedes Experiment, dessen Ergebnis man nicht kennt, kann als Zufallsexperiment betrachtet werden, selbst wenn das Ergebnis schon feststehen sollte, jedoch unbekannt ist.

Der Begriff "stochastische Größe" ist mir aus mathematischer Sicht leider nicht bekannt. Ich nehme aber an, daß er hier deckungsgleich mit dem Begriff "Zufallsvariable" verwendet wird. Eine (reelle) Zufallsvariable ist schlicht eine messbare Abbildung $X [mm] \colon \Omega \to \IR.$ [/mm] Für [mm] $\Omega$ [/mm] steht hier M.

>  und bei "bestimmen sie speziell für ..." muss ich sagen
> hab ich keine ahung :(

Überlege zuerst, welche Elemente M hat für n=2. Nimm an, daß alle diese Elemente (Ausgänge des Experiments) gleich wahrscheinlich sind. Addiere dann einfach die Wahrscheinlichkeiten für die in den einzelnen Aufgabenteilen günstigen Ausgänge.

Gruß
Will

Bezug
                
Bezug
Stochastik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Di 06.11.2007
Autor: Mr.Blonde

hallo, danke fuer die antwort!

also M hat bei n=2 fogende elemente:
{{1,1}{2,2}{3,3}....{1,2}.....} usw also 36 elemente
dh die W ist 1/36 eine diese kombinationen zu bekommen, ich denke mal bis dahi bin ich richtig - nun die frage was meinst du mit addieren?
also bei a einfach noch +1/6 also 136+1/6 als loesung?

wie soll das dann fuer die weiteren gehn?
ich habe ja keine ahnung (bei b zb) welche augenzahlen ich habe, hoffe man versteht meine frage - danke schon mal...

Bezug
                        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Di 06.11.2007
Autor: koepper

Hallo,

> also M hat bei n=2 fogende elemente:
>  {{1,1}{2,2}{3,3}....{1,2}.....} usw also 36 elemente
>  dh die W ist 1/36 eine diese kombinationen zu bekommen,

genau.

> ich denke mal bis dahi bin ich richtig - nun die frage was
> meinst du mit addieren?
>  also bei a einfach noch +1/6 also 136+1/6 als loesung?

Bsp.: (a)
P(X = 1) = 6 * 1/36 = 1/6, denn M hat 6 Elemente, bei denen vorne die 1 steht
P(X = 2) = 6 * 1/36 = 1/6, denn M hat 6 Elemente, bei denen vorne die 2 steht
u.s.w.

das gleiche kann man natürlich auch machen für die Zufallsvariable X, die den 2. wurf betrachtet.

jetzt ok?

Gruß
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]