matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieStochastische Konvergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Stochastische Konvergenz
Stochastische Konvergenz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Mi 25.03.2015
Autor: MeineKekse

Aufgabe
Sei [mm] X_{1},X_{2},... [/mm] eine Folge von unabhängigen, auf dem Intervall [0,1] gleichverteilten Zufallsvariablen. Für n [mm] \in \IN [/mm] sei
[mm] Y_{n } := min_{i \in {1,...,n}}} X_{i} [/mm] und [mm] Z_{n } := max_{i \in {1,...,n}}} X_{i} [/mm]

a) Bestimmen Sie die Verteilungsfunktion von [mm] Y_{n} [/mm] und [mm] Z_{n} [/mm] für [mm] n \in \IN [/mm]

b) Zeigen Sie, dass [mm] (Y_{n})_{n \in \IN}[/mm] und [mm] (Z_{n})_{n \in \IN}[/mm] stochatisch konvergieren und bestimmen Sie die Grenzwerte.



Hi, [Dateianhang nicht öffentlich] a)  habe ich mal als Bild angehängt.

Zur b) Nach a) weiß ich [mm] P(Y_{n} \le t) =1 -(1- t)^n [/mm] mit t [mm] \in [/mm] (0,1)
[mm]\Rightarrow P(Y_{n} > t) =1-(1 -(1- t)^n) [/mm]
[mm]\Rightarrow P(Y_{n} > t) = (1- t)^n [/mm]
[mm]\Rightarrow \limes_{n\rightarrow\infty} P(Y_{n} > t) = \limes_{n\rightarrow\infty} (1- t)^n [/mm]
[mm]\Rightarrow \limes_{n\rightarrow\infty} P(Y_{n} > t) = 0 [/mm]
[mm]\Rightarrow Y_{n} [/mm] konvergiert stochastisch gegen 0

Nun glaube ich, dass [mm] Z_{n} [/mm] stochastsch gegen 1 konvergiert. beim Beweis scheitere ich leider. Kann mir da jemand helfen.

(Nach a) weiß ich [mm] P(Z_{n} \le t) = t^n [/mm] )

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Stochastische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 Mi 25.03.2015
Autor: Gonozal_IX

Hiho,

zu deiner Mitschrift:

1.) Du solltest einen anderen Buchstaben als f wählen, wenn dein f aussieht wie eine 1.

2.) Es muss in deiner Lösung natürlich heißen: [mm] $\bigcap_{i \in \{1,\ldots,n\}}$ [/mm] statt [mm] $\bigcup_{i \in \{1,\ldots,n\}}$ [/mm]

Ansonsten passt es aber.

Zu deiner b) Lösung: Deine Lösung für [mm] $Y_n \to [/mm] 0$ ist Ordnung. Deine Nachfrage bezüglich [mm] Z_n [/mm] beweist aber, dass du keine Ahnung hast, was stochastische Konvergenz eigentlich bedeutet.

Daher die Frage: Wann konvergiert nach Definitiion [mm] $Z_n \to [/mm] Z$ stochastisch?

Gruß,
Gono

Bezug
                
Bezug
Stochastische Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 Mi 25.03.2015
Autor: MeineKekse

[mm] Z_{n} [/mm] konvergiert stochastisch gegen Z

wenn [mm] \forall \varepsilon > 0 \limes_{n\rightarrow\infty} P(|Z_{n} -Z| \ge \varepsilon) = 0 [/mm]

Sprich in meinem Fall muss ich zeigen
[mm] \forall \varepsilon > 0 \limes_{n\rightarrow\infty} P(|Z_{n} -1| \ge \varepsilon) = 0 [/mm]

Wie gehts denn weiter?

Bezug
                        
Bezug
Stochastische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mi 25.03.2015
Autor: Gonozal_IX

Hiho,

na das sieht doch schon mal gut aus.

Dann überlege dir mal, welchen Wertebereich [mm] Z_n [/mm] hat und was dann also für [mm] |Z_n [/mm] - 1| gilt.

Der Rest ist simples umformen....

Gruß,
Gono

Bezug
                                
Bezug
Stochastische Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Mi 25.03.2015
Autor: MeineKekse


> Dann überlege dir mal, welchen Wertebereich [mm]Z_n[/mm] hat und
> was dann also für [mm]|Z_n[/mm] - 1| gilt.

Kann man wie folgt argumentieren?
[mm] P(|Z_{n} -1| \ge \varepsilon) = P(Z_{n} \le 1-\varepsilon) = (1-\varepsilon)^n [/mm]

[mm] \Rightarrow \limes_{n\rightarrow\infty} P(|Z_{n} -1| \ge \varepsilon) =\limes_{n\rightarrow\infty} (1-\varepsilon)^n = 0[/mm]



Bezug
                                        
Bezug
Stochastische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mi 25.03.2015
Autor: Gonozal_IX

Hiho,

> Kann man wie folgt argumentieren?
>  [mm]P(|Z_{n} -1| \ge \varepsilon) = P(Z_{n} \le 1-\varepsilon) = (1-\varepsilon)^n[/mm]
>  
> [mm]\Rightarrow \limes_{n\rightarrow\infty} P(|Z_{n} -1| \ge \varepsilon) =\limes_{n\rightarrow\infty} (1-\varepsilon)^n = 0[/mm]

ja kann man, oder kann  man nicht?
Begründe doch mal jedes Gleichheitszeichen, dann siehst du es doch.

Gruß,
Gono  


Bezug
                                                
Bezug
Stochastische Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 Do 26.03.2015
Autor: MeineKekse

[mm]P(|Z_{n} -1| \ge \varepsilon) = P(Z_{n} \le 1-\varepsilon) = (1-\varepsilon)^n[/mm]

Das zweite Gleichheitszeichen ergibt sich aus a)
Das erste Gleichheitszeichen ergibt sich daraus, dass [mm]|Z_{n} -1|[/mm] den selben Wertebereich wie [mm]Z_{n}[/mm] hat und es gilt [mm] |Z_{n} -1| = g(Z_{n}) [/mm], wobei [mm] g(z) = |z-1| = 1-z , z \in [0,1][/mm]

Also: [mm]P(|Z_{n} -1| \ge \varepsilon) = P( 1-Z_{n} \ge \varepsilon) = P( -Z_{n} \ge -1 + \varepsilon) = P(Z_{n} \le 1-\varepsilon) = (1-\varepsilon)^n[/mm]

Und dann nur noch den Grenzwert berechnen. Top danke :)

Bezug
                                                        
Bezug
Stochastische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:34 Do 26.03.2015
Autor: Gonozal_IX

Hiho,

na es geht doch, wobei deine Begründungen echt kompliziert sind....

>  Das erste Gleichheitszeichen ergibt sich daraus, dass [mm]|Z_{n} -1|[/mm] den selben Wertebereich wie [mm]Z_{n}[/mm] hat und es gilt [mm]|Z_{n} -1| = g(Z_{n}) [/mm], wobei [mm]g(z) = |z-1| = 1-z , z \in [0,1][/mm]

so so..... oder in kurz: [mm] $Z_n \in [/mm] [0,1]$ und damit [mm] $Z_n [/mm] - 1 < [mm] 0\quad\Rightarrow\quad |Z_n [/mm] - 1| = 1 - [mm] Z_n$ [/mm]

Gruß,
Gono

Bezug
        
Bezug
Stochastische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Mi 25.03.2015
Autor: DieAcht

Hallo MeineKekse!


*Ich* sehe noch einen kleinen Fehler am Ende. Es ist

      [mm] $F_{Y_n}(f)=1\$ [/mm] für [mm] $f>1\$. [/mm]

(Oder auch für [mm] $f\ge [/mm] 1$.)

Betrachte bei dir mal [mm] F_{Y_n} [/mm] in [mm] $(0,1)\$. [/mm] Ist das im Allgemeinen eine
Abbildung? Wahrscheinlich ist das nur ein Flüchtigkeitsfehler,
aber sicher ist sicher.

Gruß
DieAcht

Bezug
                
Bezug
Stochastische Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:56 Mi 25.03.2015
Autor: MeineKekse

ja da hast du vollkommen recht. Das passiert, wenn man das nochmal schnell aufschreibt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]