matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStochastische Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Stochastische Unabhängigkeit
Stochastische Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit: Beispiel
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:59 So 05.07.2015
Autor: magics

Aufgabe
Definition:

n Ereignisse [mm] A_1, [/mm] ..., [mm] A_n [/mm] heißen unabhängig (oder vollständig unabhängig), falls für jede Zahl k = 2, ..., n und jede nichtleere k-elementige Teilmenge [mm] {i_1, i_2, ..., i_k} [/mm] von {1, ..., n}

[mm] P(A_i_1 \cap A_i_2 \cap [/mm] ... [mm] \cap A_i_k [/mm] ) = [mm] P(A_i_1) [/mm] * [mm] P(A_i_2) [/mm] * ... * [mm] P(A_i_k) [/mm]

gilt.

Beispiel (so steht es in einem Lehrbuch):
Ω = {1,2,3,4}, P({i}) = [mm] \bruch{1}{4} [/mm] für i = 1, ..., 4.
Die Ereignisse A  = {1,2}, B = {1,3}, C = {2,3} sind wegen
P(A [mm] \cap [/mm] B) = P(A) * P(B) = [mm] \bruch{1}{4} [/mm]
P(A [mm] \cap [/mm] C) = P(A) * P(C) = [mm] \bruch{1}{4} [/mm]
P(B [mm] \cap [/mm] C) = P(B) * P(C) = [mm] \bruch{1}{4} [/mm]

zwar paarweise unabhängig, aber wegen P(A [mm] \cap [/mm] B \ cap C) = 0 und P(A) * P(B) * P(C) = [mm] \bruch{1}{8} [/mm] nicht (vollständig) unabhängig.

Hallo,

ich habe Fragen zur Definition und zu dem Beispiel, denn ich glaube das Buch hat da einen Schönheitsfehler gemacht.

Die Definition von Wikipedia z.B. sagt, zwei Ereignisse A und B sind stochastisch unabhängig, wenn

P(A [mm] \cap [/mm] B) = P(A) * P(B)

gilt. Entsprechend wären drei Ereignisse A, B, C unabhängig, wenn

P(A [mm] \cap [/mm] B [mm] \cap [/mm] C) = P(A) * P(B) * P(C)

gilt, usw.

Bei der oben gezeigten Definition steht das zwar auch so da, nur was soll das k = 2, ... n? Ich sehe nirgendwo eine Laufvariable bei 2 beginnen und das hat mich total verwirrt. Von sowas lasse ich mich aus dem Konzept bringen.

Das gleiche gilt für das Beispiel. Für mich steht da: "Es gibt in Ω 4 Ereignisse (1,2,3 und 4), die jeweils die Wahrscheinlichkeit P(i) = [mm] \bruch{1}{4}, [/mm] i = 1,...,4 haben.

Ich hätte nun für die Ereignisse A  = {1,2}, B = {1,3}, C = {2,3} folgendes gerechnet:

P(A [mm] \cap [/mm] B) = P(A) * P(B) = [mm] \bruch{1}{4} [/mm] * [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{16} [/mm]
P(A [mm] \cap [/mm] C) = P(A) * P(C) = [mm] \bruch{1}{4} [/mm] * [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{16} [/mm]
P(B [mm] \cap [/mm] C) = P(B) * P(C) = [mm] \bruch{1}{4} [/mm] * [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{16} [/mm]

Entsprechen für
P(A) * P(B) * P(C) = [mm] \bruch{1}{64} [/mm]

------

Während ich das hier tippe habe ich eine Eingebung, warum mal wieder ich und nicht das Buch falsch liege:

Ereignis A tritt ein, wenn 1 oder 2 "gezogen" wird, daher ist
P(A) = [mm] \bruch{1}{4} [/mm] + [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{2} [/mm]
Analog für P(B) und P(C).

P(A [mm] \cap [/mm] B \ cap C) = 0, mit der Begründung, dass es kein Element gibt, das in allen drei Ereignissen vorkommt oder?

------

Dann wäre mit klar, wie das Buch auf die Wahrscheinlichkeiten kommt, bliebe (immerhin) noch die Frage mit der Laufzeitvariablen von k = 2,...,n

lg,
magics


        
Bezug
Stochastische Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 So 05.07.2015
Autor: magics

Die Frage hat sich erledigt... kann irgendjemand eine Proforma Antwort geben, damit das Ding grün wird?  (⌐■_■)

lg,
magics

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]