matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikStochastische Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Stochastische Unabhängigkeit
Stochastische Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:56 Mi 08.02.2017
Autor: MacMac512

Aufgabe
Bei einer Wahl stimmen [mm] \bruch{2}{3} [/mm] aller Wähler, die jünger als 30 Jahre sind, für den Kandidaten X. Der Stimmenanteil des Kandidaten X an den Gesammtstimmen betrage 53%, und 18% aller Wähler seien jünger als 30 Jahre.

a) Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Wähler, der 30 Jahre oder älter ist, für den Kandidaten X stimmt.

b) Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Wähler des Kandidaten X jünger als 30 Jahre ist.

c) Wie groß müsste der Anteil der Wähler mit einem Alter unter 30 Jahren sein, damit die Entscheidung eines zufällig ausgewählten Wählers für oder gegen X von der Altersgrenze "30 Jahre" stochastisch unabhängig ist?


d) Wie groß müsste der Stimmenanteil des Kandidaten X sein, damit die Entscheidung eines zufällig ausgewählten Wählers für oder gegen X von der Altersgrenze "30 Jahre" stochastisch unabhängig ist?

Hallo,

ich habe obige Aufgabe als Übungsaufgabe und bisher die a) und b) vollständig gelöst.
Für a) komme ich P(X|J) = 0,5 sowie für b) wo P(J|X) gesucht ist, auf [mm] \bruch{12}{53}. [/mm]

Bei c) habe ich jetzt allerdings Probleme.
Hier ist ja zu Zeigen, dass [mm] P(X)=P(X|J)=P(X|\overline{J}) [/mm] bzw.  [mm] P(\overline{X})=P(\overline{X}|J)=P(\overline{X}|\overline{J}). [/mm] Also schließlich, dass die Wahrscheinlichkeit für Wähler wählt X unabhängig ist ob die Bedingung jünger oder jünger-quer ist.

Gegeben ist ja sonst noch P(X)=0,53 und [mm] P(X|J)=\bruch{2}{3}. [/mm]

Mit [mm] P(X\cap [/mm] J) = P(X) * P(J) komme ich eben auf 0.53*0.18=0.0954, bin dann aber ratlos wie es weiter gehen soll, da das ja offensichtlich ungleich P(X|J) ist.

Natürlich komme ich auch hier nicht weiter was die d) angeht.

Wäre cool einen Tipp zu bekommen, damit ich das verstehe wo ich mein Problem habe. Bin über jeden Tipp dankbar und habe die Frage auch nur hier gestellt. :)

Grüße

        
Bezug
Stochastische Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Mi 08.02.2017
Autor: Diophant

Hallo,
> Bei einer Wahl stimmen [mm]\bruch{2}{3}[/mm] aller Wähler, die
> jünger als 30 Jahre sind, für den Kandidaten X. Der
> Stimmenanteil des Kandidaten X an den Gesammtstimmen
> betrage 53%, und 18% aller Wähler seien jünger als 30
> Jahre.

>

> a) Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein
> zufällig ausgewählter Wähler, der 30 Jahre oder älter
> ist, für den Kandidaten X stimmt.

>

> b) Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein
> zufällig ausgewählter Wähler des Kandidaten X jünger
> als 30 Jahre ist.

>

> c) Wie groß müsste der Anteil der Wähler mit einem Alter
> unter 30 Jahren sein, damit die Entscheidung eines
> zufällig ausgewählten Wählers für oder gegen X von der
> Altersgrenze "30 Jahre" stochastisch unabhängig ist?

>
>

> d) Wie groß müsste der Stimmenanteil des Kandidaten X
> sein, damit die Entscheidung eines zufällig ausgewählten
> Wählers für oder gegen X von der Altersgrenze "30 Jahre"
> stochastisch unabhängig ist?
> Hallo,

>

> ich habe obige Aufgabe als Übungsaufgabe und bisher die a)
> und b) vollständig gelöst.
> Für a) komme ich P(X|J) = 0,5 sowie für b) wo P(J|X)
> gesucht ist, auf [mm]\bruch{12}{53}.[/mm]

>

> Bei c) habe ich jetzt allerdings Probleme.
> Hier ist ja zu Zeigen, dass [mm]P(X)=P(X|J)=P(X|\overline{J})[/mm]
> bzw.
> [mm]P(\overline{X})=P(\overline{X}|J)=P(\overline{X}|\overline{J}).[/mm]
> Also schließlich, dass die Wahrscheinlichkeit für Wähler
> wählt X unabhängig ist ob die Bedingung jünger oder
> jünger-quer ist.

>

> Gegeben ist ja sonst noch P(X)=0,53 und
> [mm]P(X|J)=\bruch{2}{3}.[/mm]

>

> Mit [mm]P(X\cap[/mm] J) = P(X) * P(J) komme ich eben auf
> 0.53*0.18=0.0954, bin dann aber ratlos wie es weiter gehen
> soll, da das ja offensichtlich ungleich P(X|J) ist.

Da hast du beim Bearbeiten der Aufgabenteile a) und b) nicht so ganz aufgepasst. Denn die Wahrscheinlichkeit [mm] P(X\cap{J}) [/mm] wird dort zwar nirgends verlangt, aber vermutlich bist du dort bereits 'darüber gestolpert'.

Fertige (so noch nicht geschehen) eine Vierfeldertafel an, lies dort die Wahrscheinlichkeit [mm] P(X\cap{J}) [/mm] heraus und löse dann die Gleichung

[mm] P(X)*P(J)=0.53*P(J)=P(X\cap{J}) [/mm]

nach P(J) auf.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]