matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieStreckensubtraktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Streckensubtraktion
Streckensubtraktion < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Streckensubtraktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 So 18.06.2006
Autor: sternchen19.8

Aufgabe
Zeigen Sie: Sind (P,Q,R), (S,T,U) [mm] \in [/mm] Z, dann folgt aus   [mm] \overline{PQ} \equiv \overline{ST} [/mm] und  [mm] \overline{PR}\equiv \overline{SU} [/mm] auch  [mm] \overline{QR} \equiv \overline{TU}. [/mm]

Bin mir nicht sicher, wie ich das beweisen kann. Anschaulich ist die Sache ja klar.
Die Streckenaddition haben wir leider auch nicht bewiesen, so dass ich nach dem Beweis gehen könnte. Kann mir einer von euch weiterhelfen?
Wär super!

        
Bezug
Streckensubtraktion: Mehr Infos
Status: (Antwort) fertig Status 
Datum: 18:21 So 18.06.2006
Autor: DJTeeJay

Hallo sternchen!

Es ist schwierig auf deine Frage eine vernünftige Antwort zu finden, da sie meiner Meinung nach zu wenig Informationen hergibt.

z.B. Was ist diese Menge Z, in der die Punkte liegen?

Und du sagst, die Streckenaddition habt ihr noch nicht bewiesen. Wenn ich mal davon ausgehe, dass Z ein ganz normaler Vektorraum ist (z.B. [mm] \IR^{2} [/mm] oder [mm] \IR^{3} [/mm]) und ihr die Vektoraddition bereits hattet, sollte dir der Beweis von [mm] \bar{AC} = \bar{AB} + \bar{BC} [/mm] für beliebige Punkte A,B,C keine Schwierigkeiten machen. Dann auf P,Q,R und S,T,U anwenden, nach [mm] \bar{QR} [/mm] bzw. [mm] \bar{TU} [/mm] auflösen, die Gleichheiten in der Voraussetzung verwenden und fertig :)

Bezug
        
Bezug
Streckensubtraktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:51 So 18.06.2006
Autor: sternchen19.8

Z ist die Zwischerelation: Sind alle Geraden eines Inzidenzraumes linear geordnet, so lässt sich eine sogenannte Zwischerelation Z definieren durch (A,B,C) \ in Z :  [mm] \gdw [/mm] Es existiert ein g [mm] \in [/mm] G mit A,B,C [mm] \in [/mm] g sowie A [mm] \not= [/mm] B [mm] \not=C. [/mm]
Die Streckenaddition hatten wir schon, nur bewiesen haben wir sie nicht wirklich!
Kannst du mir dabei weiterhelfen?

Bezug
                
Bezug
Streckensubtraktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 21.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]