matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenStueckweise def. Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Nichtlineare Gleichungen" - Stueckweise def. Funktion
Stueckweise def. Funktion < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stueckweise def. Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:44 Di 01.12.2009
Autor: cosPhi

Hi,

Und sorry fuer das ungenaue Thema aber mehr passt leider nicht ins Eingabefeld.

Ich quaele mich gerade mit einer sehr simplen und primitiven Aufgabenstellung. Gegeben sei eine Funktion $w$:

[mm] $w(a)=\begin{cases} a + 256, & \mbox{für } a < -128 \\ a - 256, & \mbox{für } a > 128 \\ a, & \mbox{sonst} \end{cases}$ [/mm]

Wer moechte, der darf sie auch gerne als den 4-Quadrantentangens aus Imaginaerteil gebrochen durch Realteil von [mm] $e^{j\cdot a}$ [/mm] definieren ... oder als Hauptwert des komplexen Logarithmus  ;-)

(in diesem Fall wird $(-128,128]$ einfach nach [mm] $(-\pi,\pi]$ [/mm] skaliert).

Naja, auf alle Faelle ist diese Funktion naheliegenderweise sehr nichtlinear wodurch trivialerweise auch nicht $w(a+b) = w(a) + w(b)$ gilt.

Nun habe ich folgende Gleichung:

$ w(b - a) + w(d - b) + w(c - d) + w(a - c) = 0 $

wobei jeweils eine Variable unbekannt ist und 3 bekannt.

Nun moechte ich d bestimmen (bei Kenntnis von a,b,c). Gibt es dazu eine Moeglichkeit ausser hundert Milliarden Fallunterscheidungen?

Achja, die Loesung muss nicht eindeutig sein! Jede Loesung die das Ding erfuellt ist mir recht.

Eine vielleicht noch wichtige Frage die ich selbst (noch) nicht beantworten kann: Existiert immer eine Loesung?

Besten Dank im Vorraus!
cosPhi

/EDIT: Sorry, hab ich vergessen. Bei oberer Gleichung gilt selbstverstaendlich $-128 < [mm] \{a,b,c,d\} \le [/mm] 128$


        
Bezug
Stueckweise def. Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Mo 07.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]