matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieStützebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Stützebene
Stützebene < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stützebene: Frage zur Definition
Status: (Frage) beantwortet Status 
Datum: 00:56 So 13.11.2011
Autor: Loko

Hallo!

Ich muss bei meinen Aufgaben gerade mit Stützebenen hantieren und dabei hab ich mich gefragt wie das denn mit offenen Mengen ist.
Unsere Definition für eine Stützebene ist:
"Sei A [mm] \subseteq \IR^{n} [/mm] nicht leer. H ist eine Stützebene von A (in einem Punkt [mm] a_{0}), [/mm] wenn [mm] a_{0} \in [/mm] A [mm] \cap [/mm] H; und A ist enthalten in einer derabgeschlossenen Halbräume, die durch H festgelegt sind." (Aus dem Spanischen, deswegen klingt es ein wenig hakend.)
Hier haben wir jetzt aber nichts dazu gesagt, ob A abgeschlossen sein muss.
In allen Lemmata und Propositionen ist A dann aber immer abgeschlossen. Gibt es also überhaupt Stützebenen für offene Mengen?
Wenn ich mir beispielsweise (0,1) vorstelle, wo könnte da denn H an 1) treffen?

Viele Grüße! Ich hoff die Frage ist nicht zu dumm....

Loko

        
Bezug
Stützebene: Antwort
Status: (Antwort) fertig Status 
Datum: 05:48 So 13.11.2011
Autor: Al-Chwarizmi


> Hallo!
>  
> Ich muss bei meinen Aufgaben gerade mit Stützebenen
> hantieren und dabei hab ich mich gefragt wie das denn mit
> offenen Mengen ist.
>  Unsere Definition für eine Stützebene ist:
>  "Sei A [mm]\subseteq \IR^{n}[/mm] nicht leer. H ist eine
> Stützebene von A (in einem Punkt [mm]a_{0}),[/mm] wenn [mm]a_{0} \in[/mm] A
> [mm]\cap[/mm] H; und A ist enthalten in einer derabgeschlossenen
> Halbräume, die durch H festgelegt sind." (Aus dem
> Spanischen, deswegen klingt es ein wenig hakend.)
>  Hier haben wir jetzt aber nichts dazu gesagt, ob A
> abgeschlossen sein muss.
>  In allen Lemmata und Propositionen ist A dann aber immer
> abgeschlossen. Gibt es also überhaupt Stützebenen für
> offene Mengen?
>  Wenn ich mir beispielsweise (0,1) vorstelle, wo könnte da
> denn H an 1) treffen?
>  
> Viele Grüße! Ich hoff die Frage ist nicht zu dumm....
>  
> Loko


Guten Tag Loko,

da in der Definition verlangt wird, dass der Punkt [mm] a_0 [/mm] auch
zur Menge A gehören muss, zerschneidet H notwendiger-
weise jede auch noch so kleine Umgebung [mm] U(a_0) [/mm] in zwei
Teile, die diesseits bzw. jenseits von H liegen. Der Punkt [mm] a_0 [/mm]
kann also keine Umgebung besitzen, welche ganz zu A
gehört. Deshalb kann eine offene Menge gemäß dieser
Definition keine Stützebenen haben.

Man könnte sich allenfalls eine modifizierte Definition
vorstellen, bei welcher H Stützebene (im weiteren Sinn)
einer offenen Menge A ist, falls H Stützebene (in dem oben
definierten engeren Sinn) der abgeschlossenen Hülle von
A ist ...

LG   Al-Chw.


Bezug
                
Bezug
Stützebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 So 13.11.2011
Autor: Loko

Vielen vielen Dank! :)

Ja, so macht dann auch alles Sinn!!

Viele Grüße  
Loko

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]