matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSturm Liouvillesche EWP
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Sturm Liouvillesche EWP
Sturm Liouvillesche EWP < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sturm Liouvillesche EWP: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:12 Fr 01.09.2006
Autor: stevarino

Aufgabe
Lösen Sie folgende ST.L Randwertprobleme:

a.) [mm] y''+\mu*y=0 RB.:y'(\pi)=y'(2\pi)=0 [/mm]
b.) entwickeln Sie die Funktionen [mm] f(x)=1+cos^{2}x [/mm] f(x)=sinx [mm] x\in(\pi,2\pi) [/mm] nach den Eigenfunktionen von a  

Hallo

Also zuerst bestimme ich das char. Polynom

[mm] \lambda^{2}+\mu=0 [/mm]
[mm] \lambda=\pm\wurzel{-\mu} [/mm]
Muss ich jetzt immer alle drei Fälle diskutieren also [mm] \mu<0, \mu>0, \mu=0? [/mm]

Fall 1 für [mm] \mu>0 [/mm]
dann sind meine [mm] \lambda_{1,2}=\pm i\wurzel{\mu} [/mm] und ich bekomme den Ansatz für die homogene Gleichung
[mm] y_{H}=C_{1}cos\wurzel{\mu}x+C_{2}sin\wurzel{\mu}x [/mm]
[mm] y_{H}'=-C_{1}\wurzel{\mu} sin\wurzel{\mu}x+C_{2}\wurzel{\mu}cos\wurzel{\mu}x [/mm]

jetzt setz ich die RB ein
[mm] y(\pi)=-C_{1}\wurzel{\mu} sin\wurzel{\mu}\pi+C_{2}\wurzel{\mu}cos\wurzel{\mu}\pi [/mm]
[mm] y(2\pi)=-C_{1}\wurzel{\mu} sin\wurzel{\mu}2\pi+C_{2}\wurzel{\mu}cos\wurzel{\mu}2\pi [/mm]
Muss der Eigenwert immer eine ganze Zahl sein weil nur dann kann ich die Sinusterme streichen
[mm] y(\pi)=C_{2}\wurzel{\mu}cos\wurzel{\mu}\pi [/mm]
[mm] y(2\pi)=C_{2}\wurzel{\mu}cos\wurzel{\mu}2\pi [/mm]
was mach ich jetzt weiter..  der Ausdruck kann nur Null werden wenn [mm] C_{2}=0 [/mm] ist aber auch wieder nur wenn [mm] \wurzel{\mu} [/mm] eine ganze Zahl ergibt


Fall 2 für [mm] \mu<0 [/mm]
[mm] \lambda_{1,2}=\pm \wurzel{\mu} [/mm] was mich zu folgendem Ansatz bringt
[mm] y_{H}=C_{1}*e^{ \wurzel{\mu}x}+C_{2}*e^{ -\wurzel{\mu}x} [/mm]
[mm] y'_{H}=C_{1} \wurzel{\mu}*e^{ \wurzel{\mu}x}-C_{2} \wurzel{\mu}*e^{ -\wurzel{\mu}x} [/mm]
in der Lösung wird aber Substituiert für [mm] \pm \wurzel{\mu}=k [/mm] und der Ansatz [mm] y_{H}=C_{1}*e^{ kx}+C_{2}*x*e^{ kx} [/mm] wieso darf ich das machen? Funktioniert das auch so wie ich das rechne?
also weiter jetzt
ich drücke mir [mm] C_{1} [/mm] aus und setzte es in die 2te RB ein

zu [mm] C_{2}\wurzel{\mu}-C_{2}\wurzel{\mu}*e^{ -\wurzel{\mu}2\pi}=0 [/mm]
[mm] C_{2}(1-e^{ -\wurzel{\mu}2\pi})=0 [/mm]
das stimmt nur bei [mm] C_{2}=0 [/mm] oder [mm] \mu=0 [/mm]

Fall 3 [mm] \mu=0 [/mm]
[mm] y_{H}=C_{1}+C_{2}x [/mm]
[mm] y_{H}'=C_{2} [/mm]
RB einsetzen ergibt [mm] C_{2}=0 [/mm] wie jetzt weiter...

Bei Punkt b hab ich absolut keinen Plan was man machen muss um nach Eigenfunktionen zu entwickeln muss ich da einfach nur die Fourierreihe der Eigenfunktionen bilden ??????

Kann mir bitte jemand das Prinzip zum Lösen von solchen Beispielen
erklären

Danke
lg Stevo

        
Bezug
Sturm Liouvillesche EWP: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 05.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]