Subst. und Riccati DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Lösen sie folgende AWP:
1) y' = [mm] -\bruch{y}{2x}+\bruch{1}{2y}, y(2)=-\wurzel{\bruch{3}{2}}
[/mm]
2) [mm] y'=\bruch{3}{x}y-y^2-\bruch{3}{x^2}, y(2)=\bruch{1}{2} [/mm]
Hinweis zu 2: Substituieren sie mit z:=1/x |
Hallo zusammen,
ich übe gerade für die Klausur gewöhnl. DGL und habe Probleme mit obenstehenden Aufgaben.
zu 1) Ich habe sie so gelöst: Substituiert mit z=y/x. Dann bin ich auf eine Bernoulli DGL gekommen mit [mm] \alpha=-1. [/mm] Habe also substituiert mit [mm] u=z^2. [/mm] Dadurch kam eine lin. DGL zustande, die hab ich gelöst und dann eben zwei mal rücksubstituiert. Das ganze kam mir ziemlich aufwendig vor, auch wenn ich (hoffentlich zum richtigen) Ziel gekommen bin. Meine Lösung sah dann wie folgt aus: [mm] y(x)=\wurzel{\bruch{x^2}{3}+\bruch{1}{3x}}.
[/mm]
Mir gehts aber eher darum, ob dies eine spez. DGL ist, die man besser anders löst, wie ich es getan hat. Vielleicht sieht das einer ja auf einen schnellen Blick, ohne dass wir es komplett durchrechnen müssen.
zu 2) Mich wundert ein wenig der Hinweis der Substitution, weil in der Subst. y selber gar nicht vorkommt. ALso ich finde es komisch, dass wir substituieren nur, dass unsere Faktoren bzw der Störterm besser aussehen. Oder steckt etwas anderes dahinter? Ansonsten hätte ich die DGL egal ob mit dem Hinweis oder ohne als RIccati-DGL behandelt. Liege ich damit richtig?
Vielen Dank,
Gruss kaykay_22
|
|
|
|
Hallo kaykay_22,
> Lösen sie folgende AWP:
> 1) y' = [mm]-\bruch{y}{2x}+\bruch{1}{2y}, y(2)=-\wurzel{\bruch{3}{2}}[/mm]
>
> 2) [mm]y'=\bruch{3}{x}y-y^2-\bruch{3}{x^2}, y(2)=\bruch{1}{2}[/mm]
> Hinweis zu 2: Substituieren sie mit z:=1/x
> Hallo zusammen,
>
> ich übe gerade für die Klausur gewöhnl. DGL und habe
> Probleme mit obenstehenden Aufgaben.
>
> zu 1) Ich habe sie so gelöst: Substituiert mit z=y/x. Dann
> bin ich auf eine Bernoulli DGL gekommen mit [mm]\alpha=-1.[/mm] Habe
> also substituiert mit [mm]u=z^2.[/mm] Dadurch kam eine lin. DGL
> zustande, die hab ich gelöst und dann eben zwei mal
> rücksubstituiert. Das ganze kam mir ziemlich aufwendig
> vor, auch wenn ich (hoffentlich zum richtigen) Ziel
> gekommen bin. Meine Lösung sah dann wie folgt aus:
> [mm]y(x)=\wurzel{\bruch{x^2}{3}+\bruch{1}{3x}}.[/mm]
Nein, das ist keine Lösung der DGL.
> Mir gehts aber eher darum, ob dies eine spez. DGL ist, die
> man besser anders löst, wie ich es getan hat. Vielleicht
> sieht das einer ja auf einen schnellen Blick, ohne dass wir
> es komplett durchrechnen müssen.
>
Bei genauerem Betrachten handelt es sich
um eine Bernoullische Differentialgleichung.
> zu 2) Mich wundert ein wenig der Hinweis der Substitution,
> weil in der Subst. y selber gar nicht vorkommt. ALso ich
> finde es komisch, dass wir substituieren nur, dass unsere
> Faktoren bzw der Störterm besser aussehen. Oder steckt
> etwas anderes dahinter? Ansonsten hätte ich die DGL egal
> ob mit dem Hinweis oder ohne als RIccati-DGL behandelt.
> Liege ich damit richtig?
>
Mit dem Hinweis betrachtest Du nicht y(x), sondern y(z).
Die Behandlung der DGL als Riccati-DGL ist richtig.
Gruss
MathePower
> Vielen Dank,
> Gruss kaykay_22
|
|
|
|
|
Shit Danke jetzt seh ich die Bernoulli-DGL auch....
zu 2) Aber ändert sich was am Lösungsverfahren ob ich y(x) oder y(z) betrachte? Sehe da nicht so den großen Sinn dahinter, vielleicht sollte ich mal beide Möglichkeiten durchrechnen und sehe dann die Schwierigkeit.
|
|
|
|
|
Hallo kaykay_22,
> Shit Danke jetzt seh ich die Bernoulli-DGL auch....
>
> zu 2) Aber ändert sich was am Lösungsverfahren ob ich
> y(x) oder y(z) betrachte? Sehe da nicht so den großen Sinn
> dahinter, vielleicht sollte ich mal beide Möglichkeiten
> durchrechnen und sehe dann die Schwierigkeit.
Tja, das solltest Du.
Wenn Du mit der Substitution rechnest,
dann ist auch die Ableitung zu transformieren.
Gruss
MathePower
|
|
|
|