matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Substitution
Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: gebr. rat. Funktion
Status: (Frage) beantwortet Status 
Datum: 18:31 Di 04.12.2007
Autor: kermit

Aufgabe
Bilde die Stammfunktion der Differenzfunktion: f(x) - g(x)

[mm] \bruch{2x^3 + x^2 + 4x + 3}{x^4} [/mm] = [mm] \bruch{2x^3 + x^2}{x^4} [/mm]

Hi,

ich hab beide Funktionen im Integral gleichgesetzt und hatte dann folgenden Ausdruck:

[mm] \integral_{-\infty}^{-0,75}{\bruch{2x^3 + x^2 + 4x + 3}{x^4}-(\bruch{2x^3 + x^2}{x^4}) dx} [/mm]

Um die Stammfunktion zu bestimmen habe ich erstmal im Integral die Brüche zusammengerechnet damit das [mm] 2x^3 [/mm] und das [mm] x^2 [/mm] wegfällt.

dann steht da noch:

[mm] \integral_{-\infty}^{-0,75}{\bruch{4x+3}{x^4}} [/mm] dx

Dann habe ich den Bruch zerlegt um die Stammfunktion zu bestimmen:

[mm] \bruch{4x}{x^4} [/mm] + [mm] \bruch{3}{x^4} [/mm]

Die Stammfunktion wäre dann:

-0,75x * [mm] \bruch{1}{x^3} [/mm] - [mm] \bruch{1}{x^3} [/mm]

Ich habe bestimmt irgendwo nen Fehler gemacht, es geht um die bestimmung eines uneigentlichen Integrals, das ist nicht das Problem nur mit der Stammfunktion habe ich leichte Probleme.

Danke für jede Hilfe :)

MfG kermit

        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Di 04.12.2007
Autor: molekular

salute karsten...

> Bilde die Stammfunktion der Differenzfunktion: f(x) - g(x)
>  
> [mm]\bruch{2x^3 + x^2 + 4x + 3}{x^4}[/mm] = [mm]\bruch{2x^3 + x^2}{x^4}[/mm]
>  
> Hi,
>  
> ich hab beide Funktionen im Integral gleichgesetzt und
> hatte dann folgenden Ausdruck:
>  
> [mm]\integral_{-\infty}^{-0,75}{\bruch{2x^3 + x^2 + 4x + 3}{x^4}-(\bruch{2x^3 + x^2}{x^4}) dx}[/mm]
>  
> Um die Stammfunktion zu bestimmen habe ich erstmal im
> Integral die Brüche zusammengerechnet damit das [mm]2x^3[/mm] und
> das [mm]x^2[/mm] wegfällt.
>  
> dann steht da noch:
>  
> [mm]\integral_{-\infty}^{-0,75}{\bruch{4x+3}{x^4}}[/mm] dx
>  
> Dann habe ich den Bruch zerlegt um die Stammfunktion zu
> bestimmen:
>  
> [mm]\bruch{4x}{x^4}[/mm] + [mm]\bruch{3}{x^4}[/mm]
>  
> Die Stammfunktion wäre dann:
>  
> -0,75x * [mm]\bruch{1}{x^3}[/mm] - [mm]\bruch{1}{x^3}[/mm]
>  
> Ich habe bestimmt irgendwo nen Fehler gemacht, es geht um
> die bestimmung eines uneigentlichen Integrals, das ist
> nicht das Problem nur mit der Stammfunktion habe ich
> leichte Probleme.
>  
> Danke für jede Hilfe :)
>  
> MfG kermit

-----------------------------------------------------------

ja da is was beim aufleiten schiefgelaufen...

> Dann habe ich den Bruch zerlegt um die Stammfunktion zu
> bestimmen:
>  
> [mm]\bruch{4x}{x^4}[/mm] + [mm]\bruch{3}{x^4}[/mm]

soweit so gut...du kannst im ersten term noch ein x rauskürzen und dann die
[]Potenzregel anwenden...


[mm] $f(x)=x^n$ [/mm]

[mm] $F(x)=x^{n+1}*\bruch{1}{n+1}$ [/mm]

somit:

[mm]f(x)=\bruch{4x}{x^4}[/mm] + [mm]\bruch{3}{x^4}=4x^{-3}+3x^{-4}[/mm]

[mm] $F(x)=-2x^{-2}-1x^{-3}=\bruch{-2}{x^2}- \bruch{1}{x^3}$ [/mm]

-molek-[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]