matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungSubstitution
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Substitution
Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Fr 27.02.2009
Autor: Keywey

Aufgabe
Berechnen Sie das Integral mit einer geeigneten Substitution

[mm] \integral_{1}^{2}{\bruch{5*x²+x}{2*x-1} dx} [/mm]

In meinem Mathebuch steht man kommt durch Training und Intuition auf die passende Substitution, ich scheitere aber an dieser Aufgabe... könnte mir jemand sagen welche Substitution ich verwenden muss?

Liebe Grüße, Kevin

        
Bezug
Substitution: erst Polynomdivision
Status: (Antwort) fertig Status 
Datum: 17:24 Fr 27.02.2009
Autor: Loddar

Hallo Kevin!


Bevor hier an Substitution zu denken ist, musst Du den Bruch umformen, da der Zählergrad größer ist als der Nennergrad.

Führe also eine MBPolynomdivision [mm] $\text{Zähler} [/mm] \ : \ [mm] \text{Nenner}$ [/mm] durch.

Anschließend solltest Du mit der Substitution $z \ := \ 2x-1$ ans Ziel kommen.


Gruß
Loddar


Bezug
                
Bezug
Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Fr 27.02.2009
Autor: Keywey

Daran hatte ich anfangs auch gedacht, die idee wurde aber schnell zerschlagen weil ich die polynomdivision nicht hinbekomme.

(5*x²+x)/(2*x+1)=2,5*x-0,75
-(5x²+2,5x)
___________
-1,5*x
-(-1,5*x-0,75)
___________
0,75

beachte ich irgendein Rechengesetz nicht?

gruß Kevin

Bezug
                        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Fr 27.02.2009
Autor: schachuzipus

Hallo Kevin,

> Daran hatte ich anfangs auch gedacht, die idee wurde aber
> schnell zerschlagen weil ich die polynomdivision nicht
> hinbekomme.
>  
> (5*x²+x)/(2*x+1)=2,5*x-0,75


Hmm, im Ausgangspost steht aber [mm] $(5x^2+x):(2x\red{-}1)$ [/mm] ...

>  -(5x²+2,5x)
>  ___________
>  -1,5*x
>  -(-1,5*x-0,75)
>  ___________
>  0,75
>  
> beachte ich irgendein Rechengesetz nicht?

Wenn dort im Nenner wirklich "+" stand, hast du alles richtig gemacht und kannst nun [mm] $\int{\frac{5x^2+x}{2x+1} \ dx}$ [/mm] schreiben als [mm] $\int{\left(2,5x-0,75+\frac{0,75}{2x+1}\right) \ dx}$ [/mm]

Integrale sind additiv, dh. du kannst genauso die Summe der einzelnen Integrale berechnen:

[mm] $=\int{..}-\int{...}+\frac{3}{4}\cdot{}\int{\frac{1}{2x+1} \ dx}$ [/mm]

Die ersten beiden Integrale sind klar, für die Berechnung des letzten kannst du nun linear substituieren: $u=u(x):=2x+1$

Falls im Nenner doch ein "-" stand, geht es ganz genauso, lediglich das Ergebnis der Polynomdivision ist natürlich ein anderes, die Substitution am Ende ist entsprechend $u=2x-1$


>  
> gruß Kevin

LG

schachuzipus


Bezug
                                
Bezug
Substitution: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Fr 27.02.2009
Autor: Keywey

Danke für die schnelle Hilfe, ich habe mich im 2. post verschrieben, das tut mir wirklich leid =/ es sollte "-" heißen,

[mm] \integral_{1}^{2}{ \bruch{5*x²+x}{2*x-1} dx}=5,5+0,875*ln(3) [/mm]
[mm] \approx [/mm] 6,461

:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]