matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungSubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Substitution
Substitution < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Di 21.02.2012
Autor: dudu93

Hallo, ich kann einen Schritt bei der Substituion nicht nachvollziehen. Hier ist erstmal der Lösungsweg:


Man ermittle die Nullstellen der folgenden Funktion:

f(x) = 3x⁴ - 24x² - 16 = 0 | Substitution: x² = z

= z² - 8z - [mm] \bruch{16}{3} [/mm]

-> P/Q Formel:

z1/2 = 4 +- [mm] \wurzel{(-4)² + \bruch{16}{3}} [/mm]

= 4 +- [mm] \wurzel{\bruch{64}{3}} [/mm]

= 4 +- [mm] \bruch{8}{\wurzel{3}} [/mm] | Rücksubstitution x = [mm] \wurzel{z} [/mm]

= [mm] \wurzel{4 +- \bruch{8}{\wurzel{3}}} [/mm]

So würde ich es schreiben.


Laut Musterlösung soll aber rauskommen:

x = [mm] \wurzel{\bruch{4}{3} (3 + 2\wurzel{3}} [/mm]


Kann mir jemand weiterhelfen?

LG

        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Di 21.02.2012
Autor: schachuzipus

Hallo dudu93,


> Hallo, ich kann einen Schritt bei der Substituion nicht
> nachvollziehen. Hier ist erstmal der Lösungsweg:
>  
> Man ermittle die Nullstellen der folgenden Funktion:
>  
> f(x) = 3x⁴ - 24x² - 16 = 0 | Substitution: x² = z
>
> = z² - 8z - [mm]\bruch{16}{3}[/mm]  [ok]
>
> -> P/Q Formel:
>  
> z1/2 = 4 +- [mm]\wurzel{(-4)² + \bruch{16}{3}}[/mm]

Der erste Summand in der Wurzel ist doch [mm]\left(-\frac{p}{2}\right)^2[/mm]

Hier also [mm]16[/mm]

Und [mm]16+\frac{16}{3}=\frac{64}{3}[/mm]

>  
> = 4 +- [mm]\wurzel{\bruch{64}{3}}[/mm]

Ah, hier stimmt's wieder!

>  
> = 4 +- [mm]\bruch{8}{\wurzel{3}}[/mm] [ok]| Rücksubstitution x =
> [mm]\wurzel{z}[/mm]
>  
> = [mm]\wurzel{4 +- \bruch{8}{\wurzel{3}}}[/mm]

Es gibt 4 Lösungen, [mm]x_{1,2}=+\sqrt{4\pm\frac{8}{\sqrt{3}}}[/mm] und [mm]x_{3,4}=-\sqrt{4\pm\frac{8}{\sqrt{3}}}[/mm]

Je einmal unter der Wurzel + und einmal -


>  
> So würde ich es schreiben.

Ist in Ordnung!

>  
> Laut Musterlösung soll aber rauskommen:
>  
> x = [mm]\wurzel{\bruch{4}{3} (3 + 2\wurzel{3}}[/mm]

Und die anderen Lösungen...

Erweitere mal in deiner Lösung unter der Wurzel beide Summanden mit 3 und bedenke, dass [mm]3/\sqrt{3}=\sqrt{3}[/mm] ist. Dann kannst du [mm]4/3[/mm] ausklammern

Das Ergebnis der Musterlösung unterscheidet sich also nur kosmetisch von deinem ...

>
> Kann mir jemand weiterhelfen?
>  
> LG

Gruß

schachuzipus


Bezug
                
Bezug
Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Di 21.02.2012
Autor: fencheltee


> Hallo dudu93,
>  
>
> > Hallo, ich kann einen Schritt bei der Substituion nicht
> > nachvollziehen. Hier ist erstmal der Lösungsweg:
>  >  
> > Man ermittle die Nullstellen der folgenden Funktion:
>  >  
> > f(x) = 3x⁴ - 24x² - 16 = 0 | Substitution: x² = z
> >
> > = z² - 8z - [mm]\bruch{16}{3}[/mm]  [ok]
>  >

> > -> P/Q Formel:
>  >  
> > z1/2 = 4 +- [mm]\wurzel{(-4)² + \bruch{16}{3}}[/mm]
>  
> Der erste Summand in der Wurzel ist doch
> [mm]\left(-\frac{p}{2}\right)^2[/mm]
>  
> Hier also [mm]16[/mm]
>  
> Und [mm]16+\frac{16}{3}=\frac{64}{3}[/mm]
>  
> >  

> > = 4 +- [mm]\wurzel{\bruch{64}{3}}[/mm]
>  
> Ah, hier stimmt's wieder!
>  
> >  

> > = 4 +- [mm]\bruch{8}{\wurzel{3}}[/mm] [ok]| Rücksubstitution x =
> > [mm]\wurzel{z}[/mm]
>  >  
> > = [mm]\wurzel{4 +- \bruch{8}{\wurzel{3}}}[/mm]
>  
> Es gibt 4 Lösungen, [mm]x_{1,2}=+\sqrt{4\pm\frac{8}{\sqrt{3}}}[/mm]
> und [mm]x_{3,4}=-\sqrt{4\pm\frac{8}{\sqrt{3}}}[/mm]
>  
> Je einmal unter der Wurzel + und einmal -

hallo,
ich zweifel daran, dass negative wurzeln in der 11 schon behandelt werden, lasse mich aber gerne eines besseren belehren ;-)

edit: ich meine natürlich die wurzel aus negativen zahlen

>  
>
> >  

> > So würde ich es schreiben.
>  
> Ist in Ordnung!
>  
> >  

> > Laut Musterlösung soll aber rauskommen:
>  >  
> > x = [mm]\wurzel{\bruch{4}{3} (3 + 2\wurzel{3}}[/mm]
>
> Und die anderen Lösungen...
>  
> Erweitere mal in deiner Lösung unter der Wurzel beide
> Summanden mit 3 und bedenke, dass [mm]3/\sqrt{3}=\sqrt{3}[/mm] ist.
> Dann kannst du [mm]4/3[/mm] ausklammern
>  
> Das Ergebnis der Musterlösung unterscheidet sich also nur
> kosmetisch von deinem ...
>  
> >
> > Kann mir jemand weiterhelfen?
>  >  
> > LG
>
> Gruß
>  
> schachuzipus
>  

gruß tee

Bezug
                        
Bezug
Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 Di 21.02.2012
Autor: pc_doctor


>  ich zweifel daran, dass negative wurzeln in der 11 schon
> behandelt werden, lasse mich aber gerne eines besseren
> belehren ;-)


Hallo fencheltee,
also als ich in der 11. war , wurde das Thema ganz kurz angerissen , weil wir Aufgaben hatten , wo unter dem Wurzelzeichen negative Zahlen waren.

Kurz etwas über komplexe Zahlen , imaginäre Zahlen etc geredet , mehr aber auch nicht.

Unser Lehrer hatte mal gesagt , dass komplexe Zahlen wirklich auch im Rahmenplan standen und als richtige Unterrichtseinheit behandelt wurden , aber ist jetzt nicht mehr der Fall, in Berlin jedenfalls.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]