matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenSumme berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Summe berechnen
Summe berechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Fr 23.07.2010
Autor: melisa1

Aufgabe
Berechnen Sİe folgende Summen:

a) [mm] \summe_{k=1}^{\infty}k7^{-k} [/mm]    b) [mm] \summe_{k=1}^{\infty}k^2 3^{-k} [/mm]

Hallo,


zu a) habe ich:

[mm] \summe_{k=1}^{\infty}k7^{-k} =\summe_{k=1}^{\infty}\bruch{k}{7^k}=k\summe_{k=1}^{\infty}(\bruch{1}{7})^k=k*\bruch{1}{1-\bruch{1}{7}}=\bruch{7}{6}k [/mm]


stimmt das so? bei der b) wäre ich für einen Tıpp sehr dankbar.

Lg Melisa

        
Bezug
Summe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Fr 23.07.2010
Autor: Teufel

Hi!

Du darfst das k nicht einfach so rausziehen!

Ansatz:

Für die geometrische Reihe gilt [mm] \summe_{i=0}^{\infty}q^i=\bruch{1}{1-q} [/mm] für |q|<1. Leite jetzt mal beide Seiten nach q ab. Dann hast du schon fast eine Reihe, die wie die in a) aussieht.

[anon] Teufel

Bezug
                
Bezug
Summe berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Fr 23.07.2010
Autor: melisa1

Hallo nochmal,


>  
> Für die geometrische Reihe gilt
> [mm]\summe_{i=1}^{\infty}q^i=\bruch{1}{1-q}[/mm] für |q|<1. Leite
> jetzt mal beide Seiten nach q ab. Dann hast du schon fast
> eine Reihe, die wie die in a) aussieht.
>  

Wenn ich beide Seiten nach q ableite habe ich [mm] iq^{i-1}=\bruch{1}{(1-q)^2} [/mm] aber ich verstehe nicht wie ich damit weiter arbeiten soll.


Lg Melisa

Bezug
                        
Bezug
Summe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Fr 23.07.2010
Autor: Espe

[mm] $\summe_{i=1}^{\infty} iq^{i-1}=\bruch{1}{(1-q)^2} [/mm] $ hast du dann, die Reihe davor sollte man nicht verbummeln. Und wenn das "i" nun ein "k" wird und das "q" eine "7" ... dann erkennt man da schon relativ deutlich worauf das ganze hinausläuft :) n Kleines bissl musst du aber noch dran schrauben dann.

Deine zweite Aufgabe wird dann vermutlich, oh Wunder mit dem [mm] k^2 [/mm] da vor, durch nochmaliges Ableiten sicher auch gut gehen.

Viel Erfolg dabei
Espe

Bezug
                
Bezug
Summe berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:41 Sa 24.07.2010
Autor: ullim

Hi,


> Für die geometrische Reihe gilt
> [mm] \summe_{i=1}^{\infty}q^i=\bruch{1}{1-q} [/mm] für |q|<1.

Entweder [mm] \summe_{i=1}^{\infty}q^i=\bruch{q}{1-q} [/mm] oder

[mm] \summe_{i=0}^{\infty}q^i=\bruch{1}{1-q} [/mm]



Bezug
                        
Bezug
Summe berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 Sa 24.07.2010
Autor: Teufel

Hi!

Klar, habe vergessen den unteren Summationsindex zu ändern.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]