matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSumme exp.verteilter ZV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Summe exp.verteilter ZV
Summe exp.verteilter ZV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe exp.verteilter ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Do 28.07.2011
Autor: Lippel

Aufgabe
Seien $X,Y$ unabhängige, exponentialverteilte Zufallsvariablen mit Parameter [mm] $\lambda [/mm] > 0$. Welche Verteilung besitzt $X+Y$?

Hallo,

ich glaube ich stehe ein wenig auf dem Schlauch. Die Dichte der Verteilung von $X+Y$ ist gegeben durch die Faltung:
[mm] $f_{X+Y}(u) [/mm] = [mm] \int_{-\infty}^{\infty} \lambda^2 e^{-\lambda v}e^{-\lambda(u-v)} \mathbbm{1}_{[0,\infty)}(v)\mathbbm{1}_{[0,\infty)}(u-v)dv [/mm] = [mm] e^{-\lambda u}\lambda^2 \int_{0}^{u} [/mm] dv = [mm] \lambda^2 ue^{\lambda u}$ [/mm]

Damit erhalte ich die Verteilung:
$P[X+Y [mm] \leq [/mm] z] = [mm] \int_{-\infty}^{z}\lambda^2 ue^{-\lambda u}du$ [/mm]
Das Problem ist nun, dass dieses Integral meines Erachtens divergiert. Und ich sehe nicht, warum die untere Grenze eine andere sein sollte.

LG, Lippel

        
Bezug
Summe exp.verteilter ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Do 28.07.2011
Autor: luis52

Moin,

> Das Problem ist nun, dass dieses Integral meines Erachtens
> divergiert. Und ich sehe nicht, warum die untere Grenze
> eine andere sein sollte.

>

Du darfst das $u_$ nicht beliebig waehlen, deine Argumentation gilt fuer $u>0$. Somit lautet die Integraluntergrenze 0. Du hast uebrigens den Spezialfall einer []Erlang-Verteilung vorliegen.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]