matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraSumme von Untervektorräumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Summe von Untervektorräumen
Summe von Untervektorräumen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Untervektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Sa 19.01.2008
Autor: abi2007LK

Hallo,

ich verstehe nicht, wie man die Summe zweier (oder mehrerer) Untervektorräume bildet. In unserem Skript steht dazu:

Unter der Summe von k Teilmengen [mm] A_1, [/mm] ... , [mm] A_k [/mm] des K-Vektorraumes V, K [mm] \ge [/mm] 2, verstehen wir die Menge

[mm] A_1 [/mm] + ... + [mm] A_k [/mm] := [mm] \{x_1 + ... + x_k | x_i \in A_i, i = 1, ..., k \} [/mm]

Hmmm ja. Gut. Irgendwie will das nicht in meinen Kopf, wie ich dieses "Bildungsgesetz" konkret anwende bzw. wie die Summe zweier Untervektorräume aussieht. Könnte vielleicht jemand von euch anhand zweier ganz simpler Untervektorräume zeigen, wie deren Summe aussieht?

Was ich nicht so ganz verstehe ist, was diese Vektoren [mm] x_1, [/mm] ..., [mm] x_k [/mm] sind - wo kommen die her? Ich habe bereits meine beiden Bücher zur linearen Algebra befragt - die sind allerdings ebenso für mich unverständlich.



        
Bezug
Summe von Untervektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Sa 19.01.2008
Autor: koepper

Hallo,

die Summe 2er Unterräume besteht aus allen Vektoren, die sich als Summe zweier Vektoren aus den beiden U-Räumen schreiben lassen. Die konkrete Bildung ist einfach: Wenn du die Basen der beiden U-Räume vereinigst, bekommst du ein Erzeugendensystem des Summenraumes.

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]