matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungSummenformel von Diagonalen im
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Summenformel von Diagonalen im
Summenformel von Diagonalen im < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenformel von Diagonalen im: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 So 21.11.2004
Autor: nini1709

Hallo zusammen, hab da ein Problem

Habe die Aufgabe eine Summenformel der Diagonalen im n-Eck zu bestimmen und mittels Induktion zu beweisen.
Die Bildungsvorschrift um zu bestimmen wieviel Diagonale ein n-Eck besitzt, hab ich schon. Die Reihe lautet also:
0+2+5+9+...+n(n-3)/2= ?????
[mm] n\ge3 [/mm]

Wie lautet die Summenformel ?
Könnt ihr mir helfen?


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.uni-protokolle.de/foren/viewtopic.php?p=44077#44077

        
Bezug
Summenformel von Diagonalen im: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 So 21.11.2004
Autor: Hanno

Hallo Nini!

Deine Summe scheint mir soweit richtig! [ok]
Schreiben wir das Ganze mal mit Hilfe des Summezeichens, dann ergibt sich für die Anzahl der Diagonalen:
[mm] $A=\summe_{k=3}^{n}{\frac{k(k-3)}{2}}=\frac{1}{2}\cdot\left( \summe_{k=1}^{n}{k^2}-\summe_{k=1}^{n}{3k} - (1^2+2^2) + (3\cdot 1+3\cdot 2) \right)$ [/mm]

Schaffst du es nun, diese Formel mit Hilfe der Summenformeln
[mm] $\summe_{k=1}^{n}{k}=\frac{n(n+1)}{2}$ [/mm]
und
[mm] $\summe_{k=1}^{n}{k^2}=\frac{n(n+1)(2n+1)}{6}$ [/mm]
herzuleiten?

Versuch's einfach mal, wenn du Probleme hast, dann frag nach!

> Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.uni-protokolle.de/foren/viewtopic.php?p=44077#44077

Vielen Dank für den Hinweis!

Liebe Grüße,
Hanno

Bezug
        
Bezug
Summenformel von Diagonalen im: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 So 21.11.2004
Autor: nini1709

Sorry, aber kann mit dem was du geschrieben hast eigentlich gar nichts anfangen. Wie kommst du auf die erste Gleichung?
Auch was du mit den andern beiden willst versteh ich nicht.
Habe mir die Partialsummen aufgeschrieben und komme so auf:

[mm] s_{1}=0 [/mm]
[mm] s_{2}=0+2=2 [/mm]
[mm] s_{3}=0+2+5=7 [/mm]
[mm] s_{4}=0+2+5+9=16 [/mm]
[mm] s_{5}=0+2+5+9+14=30 [/mm]
[mm] s_{6}=0+2+5+9+14+20=50 [/mm]

Eigentlich muss ich doch jetzt überlegen wie ich von
1 auf 0
2 auf 2
3 auf 7
4 auf 16
usw komme, oder? Und die Formel die ich dann rausbekomme ist meine Summenformel.
Sie enthält aber kein Summenzeichen.

Bezug
                
Bezug
Summenformel von Diagonalen im: Erläuterung
Status: (Antwort) fertig Status 
Datum: 09:50 Mo 22.11.2004
Autor: Paulus

Hallo nini

>  Habe mir die Partialsummen aufgeschrieben und komme so
> auf:
>  
> [mm]s_{1}=0 [/mm]
>   [mm]s_{2}=0+2=2 [/mm]
>   [mm]s_{3}=0+2+5=7 [/mm]
>   [mm]s_{4}=0+2+5+9=16 [/mm]
>   [mm]s_{5}=0+2+5+9+14=30 [/mm]
>   [mm]s_{6}=0+2+5+9+14+20=50 [/mm]
>  
> Eigentlich muss ich doch jetzt überlegen wie ich von
> 1 auf 0
>  2 auf 2
>  3 auf 7
>  4 auf 16
>  usw komme, oder? Und die Formel die ich dann rausbekomme
> ist meine Summenformel.

Im Prinzip hast du ja Recht, die Frage ist ja nur: wie kommt man darauf?

Und da ist der Ansatz von Hanno genau der Richtige.

Offensichtlich kannst du aber mit dem Summenzeichen noch nicht sehr viel anfangen, deshalb will ich dir das, was Hanno geschrieben hat, in etwas anderer Form, ohne Summenzeichen, wiedergeben:

Du willst also folgendes berechnen:

[mm] $\bruch{3*(3-3)}{2}+\bruch{4*(4-3)}{2}+\bruch{5*(5-3)}{2}+\bruch{6*(6-3)}{2}+...+\bruch{n*(n-3)}{2} [/mm] =$

[mm] $\bruch{3^2-3*3}{2}+\bruch{4^2-3*4}{2}+\bruch{5^2-3*5}{2}+\bruch{6^2-3*6}{2}+...+\bruch{n^2-3*n}{2} [/mm] =$

[mm] $\bruch{1}{2}(3^2-3*3+4^2-3*4+5^2-3*5+6^2-3*6+...+n^2-3*n) [/mm] =$

[mm] $\bruch{1}{2}(3^2+4^2+5^2+6^2+...+n^2-3*3-3*4-3*5-3*6-...-3*n) [/mm] =$

[mm] $\bruch{1}{2}(3^2+4^2+5^2+6^2+...+n^2-3*(3+4+5+6+...+n))$ [/mm]

Jetzt erkennst du, dass du in der Klammer 2 Summenformeln gebrauchen kannst: einmal die Summe aller Quadratzahlen von 3 bis n, und dann auch dis Summe der Zahlen von 3 bis n.

Für die Summe der ersten n Quadratzahlen gilt ja die Formel, wie Hanno geschrieben:

[mm] $\bruch{n(n+1)(2n+1)}{6}$ [/mm]

Für die Summe der ersten n Zahlen hingegen:

[mm] $\bruch{n(n+1)}{2}$ [/mm]

Du musst für deine Anwendung aber beachten, dass dort nur die Summe von 3 beginnend zu berechnen ist, nicht von 1 beginnend! Die Summe der ersten 2 Glieder muss also einfach jeweils noch subtrahiert werden.

Mit lieben Grüssen

Paul

Bezug
                        
Bezug
Summenformel von Diagonalen im: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Mo 22.11.2004
Autor: nini1709

Habs verstanden. Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]