Superoptimalität < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:18 Mo 13.02.2012 | Autor: | Marcel08 |
Hallo!
In alten Unterlagen zum Operations Research stoße ich soeben auf die folgende Stelle:
"Welche Relation besteht zwischen primalem und dualem Simplex-Algorithmus?
Dualer Simplex-Algorithmus ist Spiegelbild des primalen: Während der primale Simplex mit zulässigen suboptimalen Basislösungen arbeitet und sich in Richtung der optimalen Lösung bewegt, indem er den Optimalitätstest zu erfüllen versucht, arbeitet der duale Simplex mit unzulässigen superoptimalen Basislösungen und arbeitet sich in Richtung der Optimalität, indem er die Zulässigkeit anstrebt."
Ich würde nun gerne wissen, was man sich in diesem Zusammenhang unter dem Begriff der "Superoptimalität" vorstellen kann? Wenn er im Prinzip das Gegenteil von "Suboptimalität" beschreibt, wie kann man sich eine Lösung vorstellen, die dann optimaler als optimal sein muss?
Viele Grüße, Marcel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:22 Di 14.02.2012 | Autor: | Stoecki |
ich kenne leider deinen kenntnisstand nicht, allerdings hat das was mit dem grundprinzip von primalen und deren dualen optimierungsproblemen zu tun. betrachte das folgende lp:
max [mm] c^T [/mm] x
s.d. Ax = b
x [mm] \ge [/mm] 0
und das duale lp min [mm] y^T [/mm] b
s.d. [mm] y^T [/mm] A [mm] \ge c^T
[/mm]
dann gilt folgende ungleichungskette für alle zulässigen x und y:
[mm] y^T [/mm] b = [mm] y^T [/mm] A x [mm] \ge c^T [/mm] x
damit erzeugt jedes für das duale problem zulässige y eine obere schranke an den optimalen zielfuntionswert. man kann nun aus einer dualen lösung eine zugehörige primale lösung berechnen. im dualen simplex ist diese primale lösung allerdings bei dualer zulässigkeit nicht unbedingt auch primal zulässig (wäre sie es, wäre sie auch optimal). den begriff superoptimal habe ich in der form zwar nicht gehört, allerdings muss es sich dabei um die dualen basislösungen handeln, die einfach eine obere schranke an den zielfunktionswert liefern.
ich hoffe das hilft dir weiter.
gruß bernhard
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:04 Di 14.02.2012 | Autor: | Marcel08 |
Hallo!
> ich kenne leider deinen kenntnisstand nicht, allerdings hat
> das was mit dem grundprinzip von primalen und deren dualen
> optimierungsproblemen zu tun. betrachte das folgende lp:
>
> max [mm]c^T[/mm] x
> s.d. Ax = b
> x [mm]\ge[/mm] 0
>
> und das duale lp min [mm]y^T[/mm] b
> s.d. [mm]y^T[/mm] A [mm]\ge c^T[/mm]
>
> dann gilt folgende ungleichungskette für alle zulässigen
> x und y:
>
> [mm]y^T[/mm] b = [mm]y^T[/mm] A x [mm]\ge c^T[/mm] x
>
> damit erzeugt jedes für das duale problem zulässige y
> eine obere schranke an den optimalen zielfuntionswert. man
> kann nun aus einer dualen lösung eine zugehörige primale
> lösung berechnen. im dualen simplex ist diese primale
> lösung allerdings bei dualer zulässigkeit nicht unbedingt
> auch primal zulässig (wäre sie es, wäre sie auch
> optimal). den begriff superoptimal habe ich in der form
> zwar nicht gehört, allerdings muss es sich dabei um die
> dualen basislösungen handeln, die einfach eine obere
> schranke an den zielfunktionswert liefern.
Diesen Zusammenhang erkenne ich im sogenannten Einschließungssatz wieder. Vielen Dank!
> ich hoffe das hilft dir weiter.
>
> gruß bernhard
Viele Grüße, Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:27 Di 14.02.2012 | Autor: | Stoecki |
> Hallo!
>
>
> > ich kenne leider deinen kenntnisstand nicht, allerdings hat
> > das was mit dem grundprinzip von primalen und deren dualen
> > optimierungsproblemen zu tun. betrachte das folgende lp:
> >
> > max [mm]c^T[/mm] x
> > s.d. Ax = b
> > x [mm]\ge[/mm] 0
> >
> > und das duale lp min [mm]y^T[/mm] b
> > s.d. [mm]y^T[/mm] A [mm]\ge c^T[/mm]
> >
> > dann gilt folgende ungleichungskette für alle zulässigen
> > x und y:
> >
> > [mm]y^T[/mm] b = [mm]y^T[/mm] A x [mm]\ge c^T[/mm] x
> >
> > damit erzeugt jedes für das duale problem zulässige y
> > eine obere schranke an den optimalen zielfuntionswert. man
> > kann nun aus einer dualen lösung eine zugehörige primale
> > lösung berechnen. im dualen simplex ist diese primale
> > lösung allerdings bei dualer zulässigkeit nicht unbedingt
> > auch primal zulässig (wäre sie es, wäre sie auch
> > optimal). den begriff superoptimal habe ich in der form
> > zwar nicht gehört, allerdings muss es sich dabei um die
> > dualen basislösungen handeln, die einfach eine obere
> > schranke an den zielfunktionswert liefern.
>
>
> Diesen Zusammenhang erkenne ich im sogenannten
> Einschließungssatz wieder. Vielen Dank!
ich kenne es einfach als schwache dualität
>
>
>
> > ich hoffe das hilft dir weiter.
> >
> > gruß bernhard
>
>
>
>
>
> Viele Grüße, Marcel
>
|
|
|
|