matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreSupremum/Infimum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Supremum/Infimum
Supremum/Infimum < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum/Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Mi 07.11.2012
Autor: Zero_112

Aufgabe
Bestimmen Sie das Infimum und das Supremum der Menge und geben sie, falls vorhanden, Minimum oder Maximum an.

A := { [mm] \bruch{x}{1+3x} [/mm] : x > - [mm] \bruch{1}{3} [/mm] }

Ich hab nun das Supremum sup(A) = [mm] \bruch{1}{3} [/mm] bestimmt. Wir sollen nun noch beweisen, dass es wirklich das Supremum ist und hier dachte ich mir, dass es ja keine kleinere obere Schranke als [mm] \bruch{1}{3} [/mm] geben darf. Man könnte nun einen Widerspruchsbeweis durchführen, indem ich annehme, es gäbe doch eine kleinere obere Schranke:

[mm] \exists [/mm] d [mm] \in \IR [/mm] mit d > 0

[mm] \bruch{1}{3} [/mm] - d [mm] \ge \bruch{x}{1+3x}, [/mm] wobei [mm] \bruch{x}{1+3x} [/mm]  < [mm] \bruch{1}{3} [/mm]

<=> -d [mm] \ge \bruch{x}{1+3x} [/mm] - [mm] \bruch{1}{3} [/mm]
<=>  d [mm] \le [/mm] - [mm] \bruch{x}{1+3x} [/mm] + [mm] \bruch{1}{3} [/mm]

Ich wollte nun irgendwie versuchen, dass das ganze zu d > 0 im Widerspruch steht, da dies die einzige Beweismöglichkeit ist, die ich diesbezüglich kennengelernt habe. Nur irgendwie komme hier damit nicht weiter.
Für [mm] \bruch{x}{1+3x} [/mm] kommt etwas kleiner 1/3 heraus, demnach kommt für - [mm] \bruch{x}{1+3x} [/mm] + [mm] \bruch{1}{3} [/mm] irgendetwas zwischen 0 und [mm] \bruch{1}{3} [/mm] heraus und das macht die Aussage, dass d kleinergleich den Wert ist ja nicht unwahr, da d > 0....Ich komme hier einfach nicht weiter :/

und wenn allgemein ein Infimum/Supremum ins Unendliche läuft, wie beweist man dann so etwas? (Grenzwertbetrachtung hatten wir noch nicht, deshalb darf ich das nicht anwenden)

        
Bezug
Supremum/Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Do 08.11.2012
Autor: schachuzipus

Hallo Zero_112Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

,


> Bestimmen Sie das Infimum und das Supremum der Menge und
> geben sie, falls vorhanden, Minimum oder Maximum an.
>  
> A := { [mm]\bruch{x}{1+3x}[/mm] : x > - [mm]\bruch{1}{3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  Ich hab nun das Supremum sup(A) = [mm]\bruch{1}{3}[/mm] bestimmt. [ok]
> Wir sollen nun noch beweisen, dass es wirklich das Supremum
> ist und hier dachte ich mir, dass es ja keine kleinere
> obere Schranke als [mm]\bruch{1}{3}[/mm] geben darf. Man könnte nun
> einen Widerspruchsbeweis durchführen, indem ich annehme,
> es gäbe doch eine kleinere obere Schranke:
>  
> [mm]\exists[/mm] d [mm]\in \IR[/mm] mit d > 0
>
> [mm]\bruch{1}{3}[/mm] - d [mm]\ge \bruch{x}{1+3x},[/mm] wobei [mm]\bruch{x}{1+3x}[/mm]  < [mm]\bruch{1}{3}[/mm]

?? wobei [mm]x>-1/3[/mm]

>  
> <=> -d [mm]\ge \bruch{x}{1+3x}[/mm] - [mm]\bruch{1}{3}[/mm]
> <=>  d [mm]\le[/mm] - [mm]\bruch{x}{1+3x}[/mm] + [mm]\bruch{1}{3}[/mm]

>  
> Ich wollte nun irgendwie versuchen, dass das ganze zu d > 0
> im Widerspruch steht, da dies die einzige
> Beweismöglichkeit ist, die ich diesbezüglich
> kennengelernt habe. Nur irgendwie komme hier damit nicht
> weiter.
> Für [mm]\bruch{x}{1+3x}[/mm] kommt etwas kleiner 1/3 heraus,
> demnach kommt für - [mm]\bruch{x}{1+3x}[/mm] + [mm]\bruch{1}{3}[/mm]
> irgendetwas zwischen 0 und [mm]\bruch{1}{3}[/mm] heraus und das
> macht die Aussage, dass d kleinergleich den Wert ist ja
> nicht unwahr, da d > 0....Ich komme hier einfach nicht
> weiter :/

Deine Überlegung ist gut!

Wenn es eine kleinere obere Schranke (als 1/3) - etwa [mm]\frac{1}{3}-d[/mm] mit [mm]d>0[/mm] - gäbe, müsste ja für alle [mm]x>-\frac{1}{3}[/mm] gelten, dass [mm]\frac{x}{1+3x}\le\frac{1}{3}-d[/mm]

Das kann man zum Widerspruch führen.

Finde ein [mm]x>-\frac{1}{3}[/mm], so dass [mm]\frac{x}{1+3x} \ \red{>} \ \frac{1}{3}-d[/mm] (*) gilt

[mm]x>\frac{1}{9d}-\frac{1}{3}[/mm] sollte es tun ...

Das habe ich gefunden, indem ich (*) nach x aufgelöst habe ...

>  
> und wenn allgemein ein Infimum/Supremum ins Unendliche
> läuft, wie beweist man dann so etwas?

Zb. für Sup: Nimm an, es gäbe ein (beliebiges endliches) Supremum [mm]M[/mm] und zeige, dass es dann ein x gibt, so dass M überschritten wird.

Analog für Inf

> (Grenzwertbetrachtung hatten wir noch nicht, deshalb darf
> ich das nicht anwenden)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]