matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesSurjektive Abbildung N -> Q
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Surjektive Abbildung N -> Q
Surjektive Abbildung N -> Q < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektive Abbildung N -> Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Sa 15.11.2014
Autor: Valkyrion

Aufgabe
a) Bestimme eine surjektive Abbildung von ℕ nach ℚ.
b) Folgere aus a), dass es überabzählbar viele irra-
   tionale Zahlen gibt.

zu a)
[mm] f:\IN \mapsto \IQ [/mm]
Sei n [mm] \in \IN: [/mm]

[mm] f(n)=\bruch{1}{n} [/mm] genügt der Anforderung [mm] f:\IN \mapsto \IQ^{+} [/mm] aber nicht gesamt [mm] \IQ [/mm] und ist auch nicht surjektiv sondern injektiv
quadratische Funktionen können surjektiv sein, wenn man den Definitionsbereich entsprechend wählt bzw. sie entsprechend verschiebt: Durch Verschiebung entlang der x-Achse lässt sich die Surjektivitätsanforderung erfüllen  und durch Verschiebung an der y-Achse die Anforderung: [mm] f:\IN \mapsto \IQ [/mm] gesamt:

f(n)= [mm] (\bruch{1}{n}-n)^{2}-4n; [/mm]
Liege ich mit meinem Lösungsversuch richtig?

zu b)
Sind hier Cantors Diagonalargumente hilfreich?



        
Bezug
Surjektive Abbildung N -> Q: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Sa 15.11.2014
Autor: justdroppingby

hi,

> a) Bestimme eine surjektive Abbildung von ℕ nach ℚ.
>  b) Folgere aus a), dass es überabzählbar viele irra-
>     tionale Zahlen gibt.
>  zu a)
>  [mm]f:\IN \mapsto \IQ[/mm]
>  Sei n [mm]\in \IN:[/mm]
>  
> [mm]f(n)=\bruch{1}{n}[/mm] genügt der Anforderung [mm]f:\IN \mapsto \IQ^{+}[/mm]
> aber nicht gesamt [mm]\IQ[/mm] und ist auch nicht surjektiv sondern
> injektiv
>  quadratische Funktionen können surjektiv sein, wenn man
> den Definitionsbereich entsprechend wählt

und den Wertebereich. Eine quadr. Funktion $f: [mm] \mathbb [/mm] R [mm] \to \mathbb [/mm] R$ hat immer ein Maximum oder ein Minimum. Damit auch jede quadr. Fkt.
$f: [mm] \mathbb [/mm] Q [mm] \to \mathbb [/mm] Q$  

>  bzw. sie
> entsprechend verschiebt: Durch Verschiebung entlang der
> x-Achse lässt sich die Surjektivitätsanforderung
> erfüllen

Ich wüßte nicht wie das gehen soll.

>  und durch Verschiebung an der y-Achse die
> Anforderung: [mm]f:\IN \mapsto \IQ[/mm] gesamt:

Auch hier seh ich nicht wie das funktionieren soll.  Die Verschiebung müsste doch unendlich sein, denn jede endliche Verschiebung um t macht aus [mm] $\mathbb [/mm] Q^+$ doch nur [mm] $\{q \in )-t, \infty[ | a \in \mathbb Q \}$ [/mm]  

> f(n)= [mm](\bruch{1}{n}-n)^{2}-4n;[/mm]
>  Liege ich mit meinem Lösungsversuch richtig?

Die Funktion ist weder surjektiv noch injektiv.
(Und sie ist auch nicht quadratisch in n)

> zu b)
>  Sind hier Cantors Diagonalargumente hilfreich?

Ja, Genauso in der a)

>  


Bezug
                
Bezug
Surjektive Abbildung N -> Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 15.11.2014
Autor: Valkyrion

Um die Anforderungen an die gesuchte Funktion mal etwas umgangssprachlicher auszudrücken:
- Die Funktionskurve befindet sich nur rechts von der
  y-Achse (wegen [mm] \IN). [/mm]
- [mm] \limes_{n\rightarrow\infty}= \pm \infty; \limes_{n\rightarrow0}= \pm \infty [/mm] & Extrempunkte sollten nur lokal vorhanden sein, nicht aber global.

zusätzliche Frage:
Wenn nun wie hier eine surjektive Funktion gesucht ist, darf diese dann auch zusätzlich injektiv (also bijektiv) sein?

Bezug
                        
Bezug
Surjektive Abbildung N -> Q: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 So 16.11.2014
Autor: justdroppingby


> Um die Anforderungen an die gesuchte Funktion mal etwas
> umgangssprachlicher auszudrücken:
> - Die Funktionskurve befindet sich nur rechts von der
> y-Achse (wegen [mm]\IN).[/mm]
>  - [mm]\limes_{n\rightarrow\infty}= \pm \infty; \limes_{n\rightarrow0}= \pm \infty[/mm]
> & Extrempunkte sollten nur lokal vorhanden sein, nicht aber
> global.

Ist dir bewusst, dass das hier keine reelle Funktion ist?
Das hier [mm]\limes_{n\rightarrow 0}= \pm \infty[/mm] z.B. macht für eine Funktion mit Definitionmenge [mm] $\IN$, [/mm] auch bekannt unter dem Namen Folge, keinen Sinn.


> zusätzliche Frage:
> Wenn nun wie hier eine surjektive Funktion gesucht ist,
> darf diese dann auch zusätzlich injektiv (also bijektiv)
> sein?

Ja darf sie. Wieso sollte sie das nicht dürfen?

Aber wenn das die zusätzliche Frage ist, was ist dann die ursprüngliche Frage?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]