matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenSurjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Surjektivität
Surjektivität < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektivität: Klausur
Status: (Frage) beantwortet Status 
Datum: 19:29 Sa 14.07.2007
Autor: guacamole

Aufgabe
Wieso ist jede injektive lineare Abbildung R³ --> R³ auch surjektiv und umgekehrt?

Hallo erstmal....schreibe MO Klausur und wäre für Hilfe dankbar!

Wenn f injektiv ist, heißt das, das kein Vektor auf den Nullvektor abgebildet wird, also:
Ke (f)=0 => dim Ke (f)=0

Die Dimensionsformel lautet: dim Ke(f)+dim Bi(f) = dim V
Weil dim Ke(f)=0 folgt: dim Bi(f)=V.

Hier komm ich nicht weiter, weil ich nicht weiß, was ich über die Surjektivität wissen sollte.

        
Bezug
Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Sa 14.07.2007
Autor: angela.h.b.


> Wieso ist jede injektive lineare Abbildung R³ --> R³ auch
> surjektiv und umgekehrt?

  

> Wenn f injektiv ist, heißt das, das kein Vektor auf den
> Nullvektor abgebildet wird, also:
> Ke (f)=0 => dim Ke (f)=0
>  
> Die Dimensionsformel lautet: dim Ke(f)+dim Bi(f) = dim V
>  Weil dim Ke(f)=0 folgt: dim Bi(f)=V.
>  
> Hier komm ich nicht weiter, weil ich nicht weiß, was ich
> über die Surjektivität wissen sollte.  

Hallo,

eigentlich steht schon alles da.

Du betrachtest die injektive lineare Abbildung [mm] f:V\to [/mm] W, [mm] V=W=\IR^3. [/mm]

Du schreibst selbst: f injektiv ==> dim Kern f =0,

und Du kennst die Dimensionsformel, und Du folgerst Bi(f)=dim V=3.

Das Bild von f ist ja ein Unterraum von [mm] W=\IR^3, [/mm] und da dieses Bild dieselbe Dimension hat wie [mm] \IR^3, [/mm] müssen sie gleich sein.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]