matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperSurjektivität beweisen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Surjektivität beweisen
Surjektivität beweisen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektivität beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 21.09.2016
Autor: DerPinguinagent

Hallo liebe Community! Ich brauche mal wieder ganz dringend erklärende Worte von euch.

Behauptung: Jeder endliche Integritätsring ist ein Körper.

Beweis: Sei [mm] R\backslash\{0\}=\{r_{1},...,r_{n}\} [/mm]

Zeige [mm] (R\backslash\{0\},*) [/mm] ist eine Gruppe.

Dazu zu zeigen: Zu jedem [mm] r_{i} \in [/mm] R [mm] \forall [/mm] i [mm] \in \{1,...,n\} [/mm] existiert ein [mm] r_{j} \in [/mm] R [mm] \forall [/mm] i [mm] \in \{1,...,n\} [/mm] mit [mm] r_{i}*r_{j}=1_{R} \forall \in \{1,...n\} [/mm]

Betrachte: [mm] f_{v} [/mm] : [mm] R\backslash\{0\} \to R\backslash\{0\} [/mm]
                            [mm] r_{i} \mapsto r_{i}*r_{v} [/mm]

Z.z.: [mm] f_{v} [/mm] ist bijektiv.

Warum und nicht die Gruppenaktiome?

Injektivität ist klar.

Surjektivität:

[mm] f_{v} [/mm] ist surjektiv. Da [mm] f_{v} [/mm] injektiv ist, gilt [mm] f(r_{1},...,r_{n})=\{f_{v}(r_{1}),...f_{n}(r_{n})\} \subset \{r_{1},...,r_{n}\} [/mm] hat n Elemente (Warum?) => Insbesondere Gilt: Es ex. [mm] r_{i} \in R\backslash\{0\} [/mm] s.d.

[mm] r_{i}*r_{v}=f_{v}(r_{i})=r_{1}=1 [/mm]

Kann man die Surjektivität auch anders zeigen?

Vielen Dank im Voraus!

        
Bezug
Surjektivität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mi 21.09.2016
Autor: hippias


> Hallo liebe Community! Ich brauche mal wieder ganz dringend
> erklärende Worte von euch.
>  
> Behauptung: Jeder endliche Integritätsring ist ein
> Körper.
>  
> Beweis: Sei [mm]R\{0}={r_{1},...,r_{n}}[/mm]
>  
> Zeige [mm](R\{0},*)[/mm] ist eine Gruppe.
>  
> Dazu zu zeigen: Zu jedem [mm]r_{i} \in[/mm] R [mm]\forall[/mm] i [mm]\in[/mm]
> {1,...,n} existiert ein [mm]r_{j} \in[/mm] R [mm]\forall[/mm] i [mm]\in[/mm] {1,...,n}
> mit [mm]r_{i}*r_{j}=1_{R} \forall \in[/mm] {1,...n}
>  
> Betrachte: [mm]f_{v}[/mm] : [mm]R\{0} \to R\{0}[/mm]
>                          
>     [mm]r_{i} \mapsto r_{i}*r_{v}[/mm]
>  
> Z.z.: [mm]f_{v}[/mm] ist bijektiv.
>  
> Warum und nicht die Gruppenaktiome?

Weil der Autor alle GruppeaXiome bis auf die Invertierbarkeit von Elementen für offensichtich erfüllt hält. Es ist eine gute Übung, wenn Du Dir klarmachst, dass die anderen Axiome tatsächlich erfüllt sind.

>
> Injektivität ist klar.
>  
> Surjektivität:
>
> [mm]f_{v}[/mm] ist surjektiv. Da [mm]f_{v}[/mm] injektiv ist, gilt
> [mm]f(r_{1},...,r_{n}) ={f_{v}(r_{1}),...f_{n}(r_{n})} \subset {r_{1},...,r_{n}}[/mm]
> hat n Elemente (Warum?) =>

Eine injektive Funktion bildet unterschiedliche Argumente auf unterschiedliche Bilder ab.

> Insbesondere Gilt: Es ex. [mm]r_{i} \in R\{0}[/mm]
> s.d.
>
> [mm]r_{i}*r_{v}=f_{v}(r_{i})=r_{1}=1[/mm]
>  
> Kann man die Surjektivität auch anders zeigen?

Sicher kann man das auch anders machen: wie lautet Deine Idee?

>  
> Vielen Dank im Voraus!


Bezug
                
Bezug
Surjektivität beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Mi 21.09.2016
Autor: DerPinguinagent

[mm] f_{v}:R\{0} \to R\{0} [/mm]

[mm] r_{i} \mapsto r_{i}\cdot{}r_{v} [/mm]

Sei [mm] r_{i} \in R\{0} [/mm] und y [mm] \in R\{0} [/mm] mit [mm] f_{v}(r_{i})=y. [/mm] Da [mm] f_{v}(r_{i})=r_{i}\cdot{}r_{v} [/mm] gilt [mm] y=r_{i}*r_{v} [/mm]

Nun nach [mm] r_{i} [/mm] umstellen:

[mm] y=r_{i}*{}r_{v} [/mm]

<=> [mm] y=r_{i}*r_{v} [/mm]

<=> [mm] y/r_{v}=r_{i} [/mm]

Probe: [mm] f(r_{i})=f(y/r_{v})=y/r_{v}*r_{v}=y [/mm]

Also jedes Element aus dem Urbild , bildet auf ein Element aus dem Bild ab.

Das Gilt ja für den Fall, dass [mm] r_{v}=0 [/mm] ist. Muss ich jetzt auch noch den Fall [mm] \not= [/mm] 0 betrachteten?

PS: Quatsch ich muss mich korrigieren. Es gilt hier ja die Nullteilerfreiheit, weshalb es vollkommen legitim ist, durch [mm] r_{v} [/mm] zu teilen.

LG DerPinguinagent

Bezug
                        
Bezug
Surjektivität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Do 22.09.2016
Autor: hippias


> [mm]f_{v}:R\{0} \to R\{0}[/mm]
>  
> [mm]r_{i} \mapsto r_{i}\cdot{}r_{v}[/mm]
>  
> Sei [mm]r_{i} \in R\{0}[/mm] und y [mm]\in R\{0}[/mm] mit [mm]f_{v}(r_{i})=y.[/mm] Da
> [mm]f_{v}(r_{i})=r_{i}\cdot{}r_{v}[/mm] gilt [mm]y=r_{i}*r_{v}[/mm]
>  
> Nun nach [mm]r_{i}[/mm] umstellen:
>  
> [mm]y=r_{i}*{}r_{v}[/mm]
>  
> <=> [mm]y=r_{i}*r_{v}[/mm]
>  
> <=> [mm]y/r_{v}=r_{i}[/mm]
>  
> Probe: [mm]f(r_{i})=f(y/r_{v})=y/r_{v}*r_{v}=y[/mm]
>  
> Also jedes Element aus dem Urbild , bildet auf ein Element
> aus dem Bild ab.
>  
> Das Gilt ja für den Fall, dass [mm]r_{v}=0[/mm] ist. Muss ich jetzt
> auch noch den Fall [mm]\not=[/mm] 0 betrachteten?
>  
> PS: Quatsch ich muss mich korrigieren. Es gilt hier ja die
> Nullteilerfreiheit, weshalb es vollkommen legitim ist,
> durch [mm]r_{v}[/mm] zu teilen.

Damit wäre gezeigt: wenn $y$ im Bild von [mm] $f_{v}$ [/mm] liegt, dann ist das Urbild eindeutig bestimmt; das impliziert aber die Injektivität, jedoch nicht die Surjektivität: dass ein Darstellung $y= [mm] rr_{v}$ [/mm] möglich ist, wäre ja ersteinmal zu beweisen. Im übrigen kannst Du nicht ohne weiteres in einem Integritätsbreich dividieren, dazu bedarf es schon der Invertierbarkeit, die Du erst beweisen musst.

>  
> LG DerPinguinagent  


Bezug
                                
Bezug
Surjektivität beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 Do 22.09.2016
Autor: DerPinguinagent

Warum kann man mit dieser Methode nicht die Surjektivität zeigen. In einem Mathebuch habe ich letztens gesehen, dass man das auch so zeigen kann. wegen der Invertierbarkeit ist klar.

LG DerPinguinagent

Bezug
                                        
Bezug
Surjektivität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Do 22.09.2016
Autor: hippias

Ich habe alles gesagt, was dazu zu sagen ist. Du kannst den Beweis aus dem Buch ja einmal hier hereinstellen.

Zur weiteren Verdeutlichung übertrage ich Dein Argument auf eine andere Situation: [mm] $f:\IR\to \IR$ [/mm] mit $f(x)= [mm] x^{2}$ [/mm] ist surjektiv.
"Beweis": Sei [mm] $x\in\IR$ [/mm] und $y [mm] \in \IR$ [/mm] mit $f(x)=y$. Da [mm] $f(x)=x^{2}$ [/mm] gilt [mm] $y=x^{2}$. [/mm] Wurzeln liefert $x= [mm] \sqrt{y}$. [/mm]

Probe: etc.

Trotzdem ist $f$ nicht surjektiv, weil [mm] $-1\not\in [/mm] Bild(f)$. Das Problem ist, dass ich hier davon ausgegangen bin, dass $y$ ein Quadrat ist, bei Dir ist das Problem, dass davon ausgegangen wird, dass $y$ durch [mm] $r_{v}$ [/mm] teilbar ist.


Bezug
                
Bezug
Surjektivität beweisen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:21 Mi 21.09.2016
Autor: DerPinguinagent

Mir ist aufgefallen, das ein Teil in dem ersten Text fehlt, und zwar:

[mm] =>{f_{v}(r_{1}),...f_{n}(r_{n})} [/mm] = [mm] {r_{1},...,r_{n}} [/mm]

Aber warum ist das so?

Bezug
                        
Bezug
Surjektivität beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Do 22.09.2016
Autor: hippias


> Mir ist aufgefallen, das ein Teil in dem ersten Text fehlt,
> und zwar:
>  
> [mm]=>{f_{v}(r_{1}),...f_{n}(r_{n})}[/mm] = [mm]{r_{1},...,r_{n}}[/mm]
>  
> Aber warum ist das so?

Siehe die erste Antwort:
[mm] ${f_{v}(r_{1}),...f_{n}(r_{n})}$ [/mm] ist eine $n$-elementige Teilmenge der $n$-elementigen Menge [mm] ${r_{1},...,r_{n}}$ [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]